forked from dagush/WholeBrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Fig_StefanovskiEtAl2019_Fig3.py
31 lines (29 loc) · 1.67 KB
/
Fig_StefanovskiEtAl2019_Fig3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# --------------------------------------------------------------------------------------
# Plot Figure 3 in:
# [StefanovskiEtAl2019] Stefanovski, L., P. Triebkorn, A. Spiegler, M.-A. Diaz-Cortes, A. Solodkin, V. Jirsa,
# R. McIntosh and P. Ritter; for the Alzheimer's disease Neuromigang Initiative (2019).
# "Linking molecular pathways and large-scale computational modeling to assess candidate
# disease mechanisms and pharmacodynamics in Alzheimer's disease."
# Front. Comput. Neurosci., 13 August 2019 | https://doi.org/10.3389/fncom.2019.00054
# Taken from the code at:
# https://github.com/BrainModes/TVB_EducaseAD_molecular_pathways_TVB/blob/master/Educase_AD_study-LS-Surrogate.ipynb
#
# --------------------------------------------------------------------------------------
import numpy as np
import matplotlib.pyplot as plt
from functions.Models import Abeta_StefanovskiEtAl2019 as Abeta
if __name__ == '__main__':
plt.rcParams.update({'font.size': 22})
# Cause-and-effect model for Abeta: sigmoidal transfer function
# --------------------------------------------------------------
# visualize
x = np.arange(1., 3, 0.01)
plt.plot(x, Abeta.transform_abeta_exp(x))
plt.xlabel("Abeta PET SUVR")
plt.ylabel("inhibitory rate b")
plt.suptitle("Sigmoidal transfer function", fontweight="bold", fontsize="18", y = 1.05)
plt.grid()
plt.show()
# --------------------------------------------------------------------------------------
# --------------------------------------------------------------------------------------
# --------------------------------------------------------------------------------------