forked from 152334H/tortoise-tts-fast
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
197 lines (179 loc) · 7.15 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# AGPL: a notification must be added stating that changes have been made to that file.
import os
import torch
import torchaudio
import streamlit as st
from tortoise.api import MODELS_DIR, TextToSpeech
from tortoise.utils.audio import load_voices
from tortoise.utils.diffusion import K_DIFFUSION_SAMPLERS
SAMPLERS = list(K_DIFFUSION_SAMPLERS.keys()) + ["ddim"]
from contextlib import contextmanager
from time import time
from io import BytesIO
@contextmanager
def timeit(desc=""):
start = time()
yield
print(f"{desc} took {time() - start:.2f} seconds")
if __name__ == "__main__":
text = st.text_area(
"Text",
help="Text to speak.",
value="The expressiveness of autoregressive transformers is literally nuts! I absolutely adore them.",
)
voices = os.listdir("tortoise/voices") + ["random"]
voices.remove("cond_latent_example")
voice = st.selectbox(
"Voice",
voices,
help="Selects the voice to use for generation. See options in voices/ directory (and add your own!) "
"Use the & character to join two voices together. Use a comma to perform inference on multiple voices.",
index=len(voices) - 1,
)
preset = st.selectbox(
"Preset",
(
"single_sample",
"ultra_fast",
"ultra_fast_old",
"fast",
"standard",
"high_quality",
),
help="Which voice preset to use.",
index=1,
)
with st.expander("Advanced"):
col1, col2 = st.columns(2)
with col1:
"""#### Model parameters"""
candidates = st.number_input(
"Candidates", help="How many output candidates to produce per-voice.", value=3
)
sampler = st.radio(
"Sampler",
SAMPLERS,
help="override the sampler used for diffusion (default depends on preset)",
index=1
)
steps = st.number_input(
"Steps",
help="Override the steps used for diffusion (default depends on preset)",
value=30,
)
seed = st.number_input(
"Seed", help="Random seed which can be used to reproduce results.", value=-1
)
if seed == -1:
seed = None
"""#### Directories"""
output_path = st.text_input(
"Output Path", help="Where to store outputs.", value="results/"
)
model_dir = st.text_input(
"Model Directory",
help="Where to find pretrained model checkpoints. Tortoise automatically downloads these to .models, so this"
"should only be specified if you have custom checkpoints.",
value=MODELS_DIR,
)
with col2:
"""#### Optimizations"""
high_vram = not st.checkbox(
"Low VRAM",
help="Re-enable default offloading behaviour of tortoise",
value=True,
)
half = st.checkbox(
"Half-Precision",
help="Enable autocast to half precision for autoregressive model",
value=False,
)
kv_cache = st.checkbox(
"Key-Value Cache",
help="Enable kv_cache usage, leading to drastic speedups but worse memory usage",
value=True,
)
cond_free = st.checkbox(
"Conditioning Free", help="Force conditioning free diffusion", value=True
)
no_cond_free = st.checkbox(
"Force Not Conditioning Free",
help="Force disable conditioning free diffusion",
value=False,
)
"""#### Debug"""
produce_debug_state = st.checkbox(
"Produce Debug State",
help="Whether or not to produce debug_state.pth, which can aid in reproducing problems. Defaults to true.",
value=True,
)
if 'tts' not in st.session_state or st.session_state.tts._config() != {
'models_dir': model_dir, 'high_vram': high_vram, 'kv_cache': kv_cache
}:
st.session_state.tts = TextToSpeech(models_dir=model_dir, high_vram=high_vram, kv_cache=kv_cache)
tts = st.session_state.tts
if st.button("Start"):
with st.spinner(f"Generating {candidates} candidates for voice {voice} (seed={seed}). You can see progress in the terminal"):
os.makedirs(output_path, exist_ok=True)
selected_voices = voice.split(",")
for k, selected_voice in enumerate(selected_voices):
if "&" in selected_voice:
voice_sel = selected_voice.split("&")
else:
voice_sel = [selected_voice]
voice_samples, conditioning_latents = load_voices(voice_sel)
with timeit(
f"Generating {candidates} candidates for voice {selected_voice} (seed={seed})"
):
nullable_kwargs = {
k: v
for k, v in zip(
["sampler", "diffusion_iterations", "cond_free"],
[sampler, steps, cond_free],
)
if v is not None
}
gen, dbg_state = tts.tts_with_preset(
text,
k=candidates,
voice_samples=voice_samples,
conditioning_latents=conditioning_latents,
preset=preset,
use_deterministic_seed=seed,
return_deterministic_state=True,
cvvp_amount=0.0,
half=half,
**nullable_kwargs,
)
def save_generation(g, filename: str):
torchaudio.save(
os.path.join(output_path, filename),
g.squeeze(0).cpu(),
24000,
)
audio_buffer = BytesIO()
torchaudio.save(audio_buffer, g.squeeze(0).cpu(), 24000, format='wav')
st.audio(audio_buffer, format="audio/wav")
st.download_button(
"Download sample",
audio_buffer,
file_name=filename,
)
if isinstance(gen, list):
for j, g in enumerate(gen):
filename = f"{selected_voice}_{k}_{j}.wav"
save_generation(g, filename)
else:
filename = f"{selected_voice}_{k}.wav"
save_generation(gen, filename)
if produce_debug_state:
os.makedirs("debug_states", exist_ok=True)
filename = f"debug_states/do_tts_debug_{selected_voice}.pth"
torch.save(dbg_state, filename)
dbg_buffer = BytesIO()
torch.save(dbg_buffer, filename)
st.download_button(
"Download debug state",
dbg_buffer,
file_name=f"debug_states/do_tts_debug_{selected_voice}.pth",
)