-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
143 lines (118 loc) · 5.19 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# This code is improved so as to report new and more relevant metrics
import os
import sys
import torch
import torch.autograd as autograd
import torch.nn.functional as F
#### NEW ####
# Packages for reporting f1, precision and recall
from sklearn.metrics import f1_score, precision_score, recall_score
#### NEW ####
def train(train_iter, dev_iter, model, args):
if args.cuda:
model.cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
steps = 0
best_acc = 0
last_step = 0
model.train()
for epoch in range(1, args.epochs+1):
for batch in train_iter:
feature, target = batch.text, batch.label
feature = feature.data.t()
target = target.data.sub(1) # batch first, index align
if args.cuda:
feature, target = feature.cuda(), target.cuda()
optimizer.zero_grad()
logit = model(feature)
loss = F.cross_entropy(logit, target)
loss.backward()
optimizer.step()
steps += 1
if steps % args.log_interval == 0:
corrects = (torch.max(logit, 1)[1].view(target.size()).data == target.data).sum()
accuracy = 100.0 * corrects/batch.batch_size
sys.stdout.write(
'\rBatch[{}] - loss: {:.6f} acc: {:.4f}%({}/{})'.format(steps,
loss.item(),
accuracy.item(),
corrects.item(),
batch.batch_size))
if steps % args.test_interval == 0:
dev_acc = eval(dev_iter, model, args)
if dev_acc > best_acc:
best_acc = dev_acc
last_step = steps
if args.save_best:
save(model, args.save_dir, 'best', steps)
#### NEW ####
save(model, "./cnn/snapshot/", "best", "model")
#### NEW ####
else:
if steps - last_step >= args.early_stop:
print('early stop by {} steps.'.format(args.early_stop))
elif steps % args.save_interval == 0:
save(model, args.save_dir, './cnn/snapshot', steps)
def eval(data_iter, model, args):
model.eval()
corrects, avg_loss = 0, 0
for batch in data_iter:
feature, target = batch.text, batch.label
feature.t_(), target.sub_(1) # batch first, index align
if args.cuda:
feature, target = feature.cuda(), target.cuda()
logit = model(feature)
loss = F.cross_entropy(logit, target, size_average=False)
avg_loss += loss.item()
corrects += (torch.max(logit, 1)
[1].view(target.size()).data == target.data).sum()
#### NEW ####
# Reports the relevant metrics when testing
if args.test:
output = logit.clone()
_, predicted = torch.max(output, 1)
predicted = predicted.cpu()
target = target.cpu()
precision = precision_score(y_true=target, y_pred=predicted, average='weighted')
recall = recall_score(y_true=target, y_pred=predicted, average='weighted')
f1 = f1_score(y_true=target, y_pred=predicted, average='weighted')
#### NEW ####
size = len(data_iter.dataset)
avg_loss /= size
accuracy = 100.0 * corrects/size
print('\nEvaluation - loss: {:.6f} acc: {:.4f}%({}/{}) \n'.format(avg_loss,
accuracy,
corrects,
size))
#### NEW ####
# Saves the relevant metrics if a results path is selected
if args.results_path is not None:
save_test(args, precision, recall, f1, accuracy)
#### NEW ####
return accuracy
#### NEW ####
def save_test(args, precision, recall, f1, accuracy):
string = "Precision: {:.3f}\nRecall: {:.3f}\nF1-Score: {:.3f}\n".format(precision,recall,f1)
with open(args.results_path,'w', encoding="utf8") as ff:
ff.write(string)
ff.write("Accuracy: {:.3f}\n".format(accuracy))
#### NEW ####
def predict(text, model, text_field, label_feild, cuda_flag):
assert isinstance(text, str)
model.eval()
text = text_field.preprocess(text)
text = [[text_field.vocab.stoi[x] for x in text]]
x = torch.tensor(text)
x = autograd.Variable(x)
if cuda_flag:
x = x.cuda()
print(x)
output = model(x)
_, predicted = torch.max(output, 1)
return label_feild.vocab.itos[predicted.item()+1]
def save(model, save_dir, save_prefix, steps):
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
save_prefix = os.path.join(save_dir, save_prefix)
save_path = '{}_steps_{}.pt'.format(save_prefix, steps)
torch.save(model.state_dict(), save_path)