-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPolarityGenerator.py
83 lines (64 loc) · 2.2 KB
/
PolarityGenerator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# Python program for Sentiment Analysis from csv file
# importing all necessery modules
from textblob import TextBlob
import sys
import matplotlib.pyplot as plt
import csv
import pandas
# Calculation of Polarity %
def percentage(part, whole):
return(100 * (float(part)/float(whole)))
# Initiation of vars
positive=0
negative=0
neutral=0
polarity=0
totalTweets=0
# Open csv file, read each row and execute the polarity
with open('tweets_facebook_append.csv', encoding="utf8") as csv_file:
row_reader=csv.reader(csv_file)
for row in row_reader:
row = str([cell.encode('utf-8') for cell in row])
analysis = TextBlob(row)
print(analysis)
# polartity for each row
row_polarity = analysis.sentiment.polarity
totalTweets += 1
# counting the tweets in the file
print('value of total keywords is:', totalTweets)
print(row_polarity)
# counting neutral tweets
if (analysis.sentiment.polarity ==0):
neutral +=1
# counting negative tweets
elif (analysis.sentiment.polarity < 0.00):
negative += 1
# counting positive tweets
elif (analysis.sentiment.polarity > 0.00):
positive +=1
# Calculation of Polarity percentage
positive = percentage(positive, totalTweets)
negative = percentage(negative, totalTweets)
neutral = percentage(neutral, totalTweets)
positive = format(positive, '.2f')
negative = format(negative, '.2f')
neutral = format(neutral, '.2f')
print('value of total positive is:', positive)
print('value of total negative is:', negative)
print('value of total neutral is:', neutral)
if (row_polarity == 0):
print("Neutral")
elif (row_polarity < 0):
print("Negative")
elif (row_polarity > 0):
print("Positive")
# Building the pie chart for visualization
labels = ['Positive ['+str(positive)+'%]','Neutral [' + str(neutral) + '%]', 'Negative [' + str(negative) + '%']
sizes = [positive, neutral, negative]
colors = ['yellowgreen','green','red']
patches, texts = plt.pie(sizes, colors=colors, startangle=90)
plt.legend(patches, labels, loc="best")
plt.title('How people are reacting on the breach by analyzing ' + str(totalTweets) + ' Tweets.')
plt.axis('equal')
plt.tight_layout()
plt.show()