-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathremote_learner_ppo_ur5.py
98 lines (75 loc) · 2.96 KB
/
remote_learner_ppo_ur5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import imp
import torch
import argparse
import time
import relod.utils as utils
import os
from relod.algo.remote_wrapper import RemoteWrapper
from relod.algo.ppo_rad_agent import PPORADLearner, PPORADPerformer
from relod.algo.comm import MODE
from relod.logger import Logger
from remote_learner_ur5 import MonitorTarget
def parse_args():
parser = argparse.ArgumentParser()
# server
parser.add_argument('--args_port', default=9630, type=int)
# agent
parser.add_argument('--port', default=9876, type=int)
# misc
parser.add_argument('--device', default='cuda:0', type=str)
args = parser.parse_args()
return args
def main():
server_args = parse_args()
agent = RemoteWrapper(port=server_args.port)
args = agent.recv_data()
agent.init_performer(PPORADPerformer, args)
agent.init_learner(PPORADLearner, args, agent.performer)
# Monitor
mt = MonitorTarget()
mt.reset_plot()
# sync initial weights with oboard
agent.send_policy()
utils.set_seed_everywhere(args.seed)
utils.make_dir(args.work_dir)
model_dir = utils.make_dir(os.path.join(args.work_dir, 'model'))
args.model_dir = model_dir
if server_args.device is '':
args.device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
else:
args.device = server_args.device
L = Logger(args.work_dir, use_tb=args.save_tb)
episode, episode_reward, episode_step, done = 0, 0, 0, True
episode_length_step = int(args.episode_length_time / args.dt)
(image, propri) = agent.receive_init_ob()
start_time = time.time()
for step in range(args.env_steps):
action, lprob = agent.sample_action((image, propri))
(reward, (next_image, next_propri), done, lprob, kwargs) = agent.receive_sample_from_onboard()
episode_reward += reward
episode_step += 1
agent.push_sample((image, propri), action, reward, (next_image, next_propri), done, lprob, **kwargs)
if done or (episode_step == episode_length_step): # set time out here
stat = agent.update_policy(done, next_image, next_propri)
mt.reset_plot() # Monitor handling
if agent.mode == MODE.REMOTE_LOCAL:
if stat != None:
agent.send_cmd('new policy')
agent.send_policy()
else:
agent.send_cmd('no policy')
L.log('train/duration', time.time() - start_time, step)
L.log('train/episode_reward', episode_reward, step)
L.dump(step)
(next_image, next_propri) = agent.receive_init_ob()
episode_reward = 0
episode_step = 0
episode += 1
L.log('train/episode', episode, step)
start_time = time.time()
(image, propri) = (next_image, next_propri)
agent.close()
print('Train finished')
if __name__ == '__main__':
torch.multiprocessing.set_start_method('spawn')
main()