-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtask_ppo_ur5_visual_reacher.py
228 lines (194 loc) · 8.84 KB
/
task_ppo_ur5_visual_reacher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import torch
import argparse
import relod.utils as utils
import time
import os
from relod.logger import Logger
from relod.algo.comm import MODE
from relod.algo.local_wrapper import LocalWrapper
from relod.algo.ppo_rad_agent import PPORADPerformer, PPORADLearner
from relod.envs.visual_ur5_reacher.configs.ur5_config import config
from relod.envs.visual_ur5_reacher.ur5_wrapper import UR5Wrapper
from remote_learner_ur5 import MonitorTarget
import numpy as np
import cv2
config = {
'conv': [
# in_channel, out_channel, kernel_size, stride
[-1, 32, 3, 2],
[32, 32, 3, 2],
[32, 32, 3, 2],
[32, 32, 3, 1],
],
'latent': 50,
'mlp': [
[-1, 1024], # first hidden layer
[1024, 1024],
[1024, -1] # output layer
],
}
def parse_args():
parser = argparse.ArgumentParser(description='Local remote visual UR5 Reacher')
# environment
parser.add_argument('--setup', default='Visual-UR5')
parser.add_argument('--env_name', default='Visual-UR5', type=str)
parser.add_argument('--ur5_ip', default='129.128.159.210', type=str)
parser.add_argument('--camera_id', default=2, type=int)
parser.add_argument('--image_width', default=160, type=int)
parser.add_argument('--image_height', default=90, type=int)
parser.add_argument('--target_type', default='reaching', type=str)
parser.add_argument('--random_action_repeat', default=1, type=int)
parser.add_argument('--agent_action_repeat', default=1, type=int)
parser.add_argument('--image_history', default=3, type=int)
parser.add_argument('--joint_history', default=1, type=int)
parser.add_argument('--ignore_joint', default=False, action='store_true')
parser.add_argument('--episode_length_time', default=4.0, type=float)
parser.add_argument('--dt', default=0.04, type=float)
parser.add_argument('--env_steps', default=150000, type=int)
# RAD
parser.add_argument('--freeze_cnn', default=0, type=int)
parser.add_argument('--rad_offset', default=0.01, type=float)
# PPO
parser.add_argument('--batch_size', default=4096, type=int)
parser.add_argument('--opt_batch_size', default=256, type=int, help="Optimizer batch size")
parser.add_argument('--n_epochs', default=10, type=int, help="Number of learning epochs per PPO update")
parser.add_argument('--actor_lr', default=0.0003, type=float)
parser.add_argument('--critic_lr', default=0.001, type=float)
parser.add_argument('--gamma', default=0.99, type=float, help="Discount factor")
parser.add_argument('--lmbda', default=0.97, type=float, help="Lambda return coefficient")
parser.add_argument('--clip_epsilon', default=0.2, type=float, help="Clip epsilon for KL divergence in PPO actor loss")
parser.add_argument('--l2_reg', default=1e-4, type=float, help="L2 regularization coefficient")
parser.add_argument('--bootstrap_terminal', default=1, type=int, help="Bootstrap on terminal state")
# agent
parser.add_argument('--remote_ip', default='192.168.0.100', type=str)
parser.add_argument('--port', default=9876, type=int)
parser.add_argument('--mode', default='rl', type=str, help="Modes in ['r', 'l', 'rl', 'e'] ")
# misc
parser.add_argument('--seed', default=2, type=int)
parser.add_argument('--work_dir', default='.', type=str)
parser.add_argument('--save_tb', default=False, action='store_true')
parser.add_argument('--save_model', default=True, action='store_true')
#parser.add_argument('--save_buffer', default=False, action='store_true')
parser.add_argument('--save_model_freq', default=10000, type=int)
parser.add_argument('--load_model', default=-1, type=int)
parser.add_argument('--device', default='cuda:0', type=str)
parser.add_argument('--lock', default=False, action='store_true')
args = parser.parse_args()
return args
def main():
args = parse_args()
if args.mode == 'r':
mode = MODE.REMOTE_ONLY
elif args.mode == 'l':
mode = MODE.LOCAL_ONLY
mt = MonitorTarget()
mt.reset_plot()
elif args.mode == 'rl':
mode = MODE.REMOTE_LOCAL
elif args.mode == 'e':
mode = MODE.EVALUATION
mt = MonitorTarget()
mt.reset_plot()
else:
raise NotImplementedError()
if args.device is '':
args.device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
args.work_dir += f'/results/{args.env_name}_{args.target_type}_' \
f'dt={args.dt}_bs={args.batch_size}_' \
f'dim={args.image_width}*{args.image_height}_{args.seed}/'
args.model_dir = args.work_dir+'model'
if mode == MODE.LOCAL_ONLY:
utils.make_dir(args.work_dir)
utils.make_dir(args.model_dir)
L = Logger(args.work_dir, use_tb=args.save_tb)
if mode == MODE.EVALUATION:
args.image_dir = args.work_dir+'image'
utils.make_dir(args.image_dir)
env = UR5Wrapper(
setup = args.setup,
ip = args.ur5_ip,
seed = args.seed,
camera_id = args.camera_id,
image_width = args.image_width,
image_height = args.image_height,
target_type = args.target_type,
image_history = args.image_history,
joint_history = args.joint_history,
episode_length = args.episode_length_time,
dt = args.dt,
ignore_joint = args.ignore_joint,
)
utils.set_seed_everywhere(args.seed, None)
obs, state = env.reset()
args.image_shape = env.observation_space.shape
args.proprioception_shape = env.state_space.shape
args.action_shape = env.action_space.shape
args.net_params = config
args.env_action_space = env.action_space
episode_length_step = int(args.episode_length_time / args.dt)
agent = LocalWrapper(episode_length_step, mode, remote_ip=args.remote_ip, port=args.port)
agent.send_data(args)
agent.init_performer(PPORADPerformer, args)
agent.init_learner(PPORADLearner, args, agent.performer)
# sync initial weights with remote
agent.apply_remote_policy(block=True)
if args.load_model > -1:
agent.load_policy_from_file(args.model_dir, args.load_model)
# TODO: Fix this hack. This gives us enough time to toggle target in the monitor
time.sleep(10)
episode, episode_reward, episode_step, done = 0, 0, 0, True
if mode == MODE.EVALUATION:
episode_image_dir = utils.make_dir(os.path.join(args.image_dir, str(episode)))
obs = torch.as_tensor(obs.astype(np.float32))[None, :, :, :]
state = torch.as_tensor(state.astype(np.float32))[None, :]
agent.send_init_ob((obs, state))
start_time = time.time()
for step in range(args.env_steps):
if mode == MODE.EVALUATION:
image = np.squeeze(obs.cpu().numpy())
image_to_save = np.transpose(image, [1, 2, 0])
image_to_save = image_to_save[:,:,0:3]
cv2.imwrite(episode_image_dir+'/'+str(step)+'.png', image_to_save)
action, lprob = agent.sample_action((obs, state))
# step in the environment
next_obs, next_state, reward, done, _ = env.step(action.cpu().numpy())
next_obs = torch.as_tensor(next_obs.astype(np.float32))[None, :, :, :]
next_state = torch.as_tensor(next_state.astype(np.float32))[None, :]
episode_reward += reward
episode_step += 1
agent.push_sample((obs, state), action, reward, (next_obs, next_state), done, lprob)
if done and step > 0:
if mode == MODE.LOCAL_ONLY:
L.log('train/duration', time.time() - start_time, step)
L.log('train/episode_reward', episode_reward, step)
L.dump(step)
L.log('train/episode', episode+1, step)
agent.update_policy(done, next_obs, next_state)
mt.reset_plot()
if mode == MODE.REMOTE_LOCAL:
if agent.recv_cmd() == 'new policy':
agent.apply_remote_policy(True)
next_obs, next_state = env.reset()
next_obs = torch.as_tensor(next_obs.astype(np.float32))[None, :, :, :]
next_state = torch.as_tensor(next_state.astype(np.float32))[None, :]
agent.send_init_ob((next_obs, next_state))
episode_reward = 0
episode_step = 0
episode += 1
if mode == MODE.EVALUATION:
episode_image_dir = utils.make_dir(os.path.join(args.image_dir, str(episode)))
mt.reset_plot()
start_time = time.time()
obs = next_obs
state = next_state
if args.save_model and (step+1) % args.save_model_freq == 0:
agent.save_policy_to_file(args.model_dir, step)
if args.save_model:
agent.save_policy_to_file(args.model_dir, step)
# Clean up
agent.close()
env.terminate()
print('Train finished')
if __name__ == '__main__':
# torch.multiprocessing.set_start_method('spawn')
main()