-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathinference.py
435 lines (324 loc) · 16.9 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import os
import sys
import torch
import torchvision
import argparse
import torch.utils.data as Data
from PIL import Image
import models.networks as nets
import torchvision.utils as vutils
import os.path as osp
import numpy as np
import cv2
from modules.keypoint_detector_heatmap import KPDetector
from util import visualizer_kp
import imageio
from modules.util import make_coordinate_grid
from modules.keypoint_detector_strong import KPDetector_strong
def load_model(load_path, G_A, R_A, R_B, KP):
state = torch.load(load_path)
G_A.load_state_dict(state['G_A'])
R_A.load_state_dict(state['R_A'])
R_B.load_state_dict(state['R_B'])
KP.load_state_dict(state['KP'])
return state['epoch'], state['learned_t']
def norm(var):
var = var.cpu().detach()
var = ((var + 1) / 2)
var[var < 0] = 0
var[var > 1] = 1
return var
def vis_points(viz, img, kpoints):
source = norm(img.data)
kp_source = kpoints.data.cpu().numpy()
source = np.transpose(source, [0, 2, 3, 1])
return viz.create_image_column_with_kp(source, kp_source)
def transform_kp(coordinates, theta, bs):
theta = theta.repeat(bs, 1, 1)
theta = theta.unsqueeze(1)
transformed = torch.matmul(theta[:, :, :, :2], coordinates.unsqueeze(-1)) + theta[:, :, :, 2:]
transformed = transformed.squeeze(-1)
return transformed
def inverse_transform_kp(coordinates, theta, bs):
inverse = torch.inverse(theta[:, :, :2])
theta = theta.repeat(bs, 1, 1)
theta = theta.unsqueeze(1)
inverse = inverse.repeat(bs, 1, 1)
inverse = inverse.unsqueeze(1)
transformed = coordinates.unsqueeze(-1) - theta[:, :, :, 2:]
transformed = torch.matmul(inverse, transformed)
transformed = transformed.squeeze(-1)
return transformed
def augment(path, seg_path, pad=True, pad_factor=0.2):
img = cv2.imread(path)
if pad:
seg = cv2.imread(seg_path)
w ,h = img.shape[0], img.shape[1]
img = cv2.copyMakeBorder(img, int(w * pad_factor), int(w * pad_factor), int(h * pad_factor), int(h * pad_factor), borderType=cv2.BORDER_CONSTANT, value=[0, 0, 0])
seg = cv2.copyMakeBorder(seg, int(w * pad_factor), int(w * pad_factor), int(h * pad_factor),
int(h * pad_factor), borderType=cv2.BORDER_CONSTANT, value=[0, 0, 0])
seg = seg[:, :, :1]
else:
seg = cv2.imread(seg_path)[:, :, :1]
seg = np.stack((seg[:,:,0],)*3, axis=-1)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
im_pil = Image.fromarray(img)
seg_pil = Image.fromarray(seg)
return im_pil, seg_pil
class Aug_dataset(Data.Dataset):
def __init__(self, root_seg, transform, transform_seg, args, train=True, hflip=False, ext='.jpg', prefix='', pad_factor=0.2):
self.transform = transform
self.transform_seg = transform_seg
self.hflip = hflip
self.train = train
self.ext = ext
self.prefix = prefix
self.pad_factor = pad_factor
self.root_dir = root_seg.replace("_seg", "")
self.seg_dir = root_seg
dir_imgs = [f for f in os.listdir(self.seg_dir) if f.endswith(self.ext)]
for i in range(0, len(dir_imgs)):
if os.path.isfile(os.path.join(self.seg_dir,self.prefix + "%0d%s" % (i, self.ext))):
start = i
break
assert start >= 0
print("start " + str(start))
self.imgs = [self.prefix + "%0d%s" % (i,self.ext) for i in range(start, start+len(dir_imgs))]
if args.data_size > 0:
self.size = args.data_size
else:
self.size = len(self.imgs)
self.real_size = len(self.imgs)
print("Data size is " + str(self.size))
def __len__(self):
return self.size
def __getitem__(self, idx):
name1 = self.imgs[idx % self.real_size]
img1_path = os.path.join(self.root_dir, name1)
seg1_path = os.path.join(self.seg_dir, name1)
print(img1_path, seg1_path)
img1, seg1 = augment(img1_path, seg1_path, pad_factor=self.pad_factor)
seg1 = seg1.convert('RGB')
if self.hflip and self.train:
img1 = img1.transpose(Image.FLIP_LEFT_RIGHT)
seg1 = seg1.transpose(Image.FLIP_LEFT_RIGHT)
img1 = self.transform(img1)
seg1 = self.transform_seg(seg1)
seg1 = (seg1 > 0.5).float()
img1 = img1 * seg1
return img1, seg1, name1
def kp_to_heatmap(x, spatial_size=256, std=0.2):
"""
:param kp: bs X num_kp X 2
:param spatial_size: int
:param std: float
:return: bs X num_kp X spatial_size X spatial_size
"""
kp = x.unsqueeze(2).unsqueeze(2)
#print(kp.size())
ss = spatial_size
bs, num_kp = kp.size(0), kp.size(1)
grid = make_coordinate_grid((ss, ss), torch.float).unsqueeze(0).unsqueeze(0).repeat(bs, num_kp,1 ,1,1).cuda() # Range -1, 1
#kp = (kp / float(ss)) * 2 - 1
#print(kp.size())
#print(grid.size())
y = torch.abs(grid - kp)
y = torch.exp(-y / (std ** 2))
z = y[:, :, :, :, 0] * y[:, :, :, :, 1]
z = z / torch.max(z)
assert bs == z.size(0) and num_kp == z.size(1) and ss == z.size(2) and ss == z.size(3)
return z
def resize(img, w, h):
img_PIL = torchvision.transforms.ToPILImage()(img[0])
img_PIL = torchvision.transforms.Resize([h,w])(img_PIL)
new_img = torchvision.transforms.ToTensor()(img_PIL)
new_img = new_img.unsqueeze(0)
return new_img
def eval(args):
if not os.path.exists(args.out):
os.makedirs(args.out)
tran_list = []
tran_list.append(torchvision.transforms.Resize((args.resize_w, args.resize_h)))
tran_list.append(torchvision.transforms.ToTensor())
tran_list.append(torchvision.transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]))
transform = torchvision.transforms.Compose(tran_list)
transform_seg = torchvision.transforms.Compose(tran_list[:-1])
dataset_a = Aug_dataset(args.root_a, transform, transform_seg, args, hflip=args.hflip, ext=args.ext_a, prefix=args.prefix_a, pad_factor=args.pad_factor_a)
data_loader_a = torch.utils.data.DataLoader(dataset_a, shuffle=False, batch_size=args.bs, drop_last=False)
dataset_b = Aug_dataset(args.root_b, transform, transform_seg, args, ext=args.ext_b, prefix=args.prefix_b, pad_factor=args.pad_factor_b)
data_loader_b = torch.utils.data.DataLoader(dataset_b, shuffle=False, batch_size=args.bs, drop_last=False)
if not args.strong_kp:
KP = KPDetector(block_expansion=32, num_kp=args.num_kp, num_channels=3, max_features=1024,
num_blocks=5, temperature=0.1, estimate_jacobian=False, scale_factor=args.scale_kp)
else:
KP = KPDetector_strong(block_expansion=32, num_kp=args.num_kp, num_channels=3, max_features=1024,
num_blocks=5, temperature=0.1, estimate_jacobian=False, scale_factor=args.scale_kp, args=args)
ch_size =args.num_kp
G_A = nets.define_G(ch_size, 2, args.ngf, args.netG, args.norm,
not args.no_dropout, args.init_type, args.init_gain, not_mask=False, only_mask=True)
R_A = nets.define_G(args.input_nc, args.output_nc, args.ngf, args.netG, args.new_norm,
not args.no_dropout, args.init_type, args.init_gain)
R_B = nets.define_G(args.input_nc, args.output_nc, args.ngf, args.netG, args.new_norm,
not args.no_dropout, args.init_type, args.init_gain)
G_A = G_A.cuda()
KP = KP.cuda()
R_A = R_A.cuda()
R_B = R_B.cuda()
viz = visualizer_kp.Visualizer(kp_size=args.num_kp)
load_epoch, learned_t = load_model(args.load, G_A, R_A, R_B, KP)
print("Loaded successfully, epoch=" + str(load_epoch))
KP = KP.train()
G_A = G_A.eval()
R_A = R_A.eval()
R_B = R_B.eval()
iter_cnt = 0
print('Started Inference...')
print(f'lengths: {len(dataset_a), len(dataset_b)}')
for data_a, data_b in zip(data_loader_a, data_loader_b):
print(iter_cnt)
img_a, seg_a, name_a = data_a
img_b, seg_b, name_b = data_b
img_a = img_a.cuda()
img_b = img_b.cuda()
seg_a = seg_a.cuda()
seg_b = seg_b.cuda()
with torch.no_grad():
kpoints_a, heatmap_a = KP(img_a)
new_heatmap_a = kp_to_heatmap(kpoints_a, img_a.size(-1))
kpoints_b, heatmap_b = KP(img_b)
new_heatmap_b = kp_to_heatmap(kpoints_b, img_b.size(-1))
if args.affine:
kpoints_b_transformed = transform_kp(kpoints_b, learned_t, args.bs)
kpoints_a_transformed = inverse_transform_kp(kpoints_a, learned_t, args.bs)
new_heatmap_b_transformed = kp_to_heatmap(kpoints_b_transformed, img_b.size(-1))
new_heatmap_a_transformed = kp_to_heatmap(kpoints_a_transformed, img_a.size(-1))
decoded_a, _ = G_A(new_heatmap_a)
_, decoded_b = G_A(new_heatmap_b)
new_heatmap_a = new_heatmap_a_transformed
new_heatmap_b = new_heatmap_b_transformed
_, decoded_ab = G_A(new_heatmap_a)
decoded_ba, _ = G_A(new_heatmap_b)
else:
decoded_a, decoded_ab = G_A(new_heatmap_a)
decoded_ba, decoded_b = G_A(new_heatmap_b)
refined_a = R_A(decoded_a)
refined_b = R_B(decoded_b)
refined_ab = R_B(decoded_ab)
refined_ba = R_A(decoded_ba)
if not args.splitted:
exps = torch.cat([img_a, seg_a, decoded_a, refined_a], 0)
vutils.save_image(exps, osp.join(args.out, "recon_a_" + str(name_a[0])), normalize=True, nrow=args.bs)
exps = torch.cat([img_b, seg_b, decoded_b, refined_b], 0)
vutils.save_image(exps, osp.join(args.out, "recon_b_" + str(name_b[0])), normalize=True, nrow=args.bs)
exps = torch.cat([img_a, refined_ab], 0)
vutils.save_image(exps, osp.join(args.out, "bab_" + str(name_a[0])), normalize=True)
exps = torch.cat([img_b, refined_ba], 0)
vutils.save_image(exps, osp.join(args.out, "aba_" + str(name_b[0])), normalize=True)
to_print = []
to_print.append(vis_points(viz, img_a, kpoints_a))
to_print.append(vis_points(viz, img_b, kpoints_b))
if args.affine:
to_print.append(vis_points(viz, img_a, kpoints_b_transformed))
to_print.append((vis_points(viz, img_a, kpoints_b_transformed) + vis_points(viz, torch.zeros(img_a.size()), kpoints_b)) / 2)
to_print.append(vis_points(viz, img_b, kpoints_a_transformed))
to_print.append((vis_points(viz, img_b, kpoints_a_transformed) + vis_points(viz, torch.zeros(img_a.size()), kpoints_a)) / 2)
to_print = np.concatenate(to_print, axis=1)
to_print = (255 * to_print).astype(np.uint8)
imageio.imsave(osp.join(args.out, "kp_" + str(name_a[0])), to_print)
to_print = []
to_print.append(vis_points(viz, img_a, kpoints_a))
to_print.append(vis_points(viz, decoded_ab, kpoints_a))
to_print.append(vis_points(viz, refined_ab, kpoints_a))
to_print = np.concatenate(to_print, axis=1)
to_print = (255 * to_print).astype(np.uint8)
imageio.imsave(osp.join(args.out, "kp_test_a" + str(name_a[0])), to_print)
to_print = []
to_print.append(vis_points(viz, img_b, kpoints_b))
to_print.append(vis_points(viz, decoded_ba, kpoints_b))
to_print.append(vis_points(viz, refined_ba, kpoints_b))
to_print = np.concatenate(to_print, axis=1)
to_print = (255 * to_print).astype(np.uint8)
imageio.imsave(osp.join(args.out, "kp_test_b" + str(name_b[0])), to_print)
else:
if args.w > 0 and args.h > 0:
img_a = resize(norm(img_a), args.w, args.h)
seg_a = resize(seg_a, args.w, args.h)
img_b = resize(norm(img_b), args.w, args.h)
seg_b = resize(seg_b, args.w, args.h)
refined_ab = resize(norm(refined_ab), args.w, args.h)
refined_ba = resize(norm(refined_ba), args.w, args.h)
decoded_ba = resize(decoded_ba, args.w, args.h)
decoded_ab = resize(decoded_ab, args.w, args.h)
else:
img_a = norm(img_a)
img_b = norm(img_b)
refined_ab = norm(refined_ab)
refined_ba = norm(refined_ba)
vutils.save_image(img_a, osp.join(args.out, "a_" + str(name_a[0])), normalize=False)
vutils.save_image(seg_a, osp.join(args.out, "seg_a_" + str(name_a[0])), normalize=False)
vutils.save_image(refined_ab, osp.join(args.out, "refined_ab_" + str(name_a[0])), normalize=False)
vutils.save_image(decoded_ab, osp.join(args.out, "decoded_ab_" + str(name_a[0])), normalize=True)
vutils.save_image(img_b, osp.join(args.out, "b_" + str(name_b[0])), normalize=False)
vutils.save_image(seg_b, osp.join(args.out, "seg_b_" + str(name_b[0])), normalize=False)
vutils.save_image(refined_ba, osp.join(args.out, "refined_ba_" + str(name_b[0])), normalize=False)
vutils.save_image(decoded_ba, osp.join(args.out, "decoded_ba_" + str(name_b[0])), normalize=True)
iter_cnt += 1
print(name_a[0], name_b[0])
print("Inference is done")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_size', type=int, default=-1)
parser.add_argument('--root_a', default='')
parser.add_argument('--root_b', default='')
parser.add_argument('--out', default='out')
parser.add_argument('--ext_a', default='.jpg')
parser.add_argument('--ext_b', default='.jpg')
parser.add_argument('--prefix_a', default='')
parser.add_argument('--prefix_b', default='')
parser.add_argument('--w', type=int, default=0)
parser.add_argument('--h', type=int, default=0)
parser.add_argument('--pad_factor_a', type=float, default=0.2)
parser.add_argument('--pad_factor_b', type=float, default=0.2)
parser.add_argument('--g_lr', type=float, default=0.0001)
parser.add_argument('--d_lr', type=float, default=0.0001)
parser.add_argument('--bs', type=int, default=1)
parser.add_argument('--resize_w', type=int, default=256)
parser.add_argument('--resize_h', type=int, default=256)
parser.add_argument('--num_kp', type=int, default=10)
parser.add_argument('--scale_kp', type=float, default=0.25)
parser.add_argument('--input_nc', type=int, default=3,
help='# of input image channels: 3 for RGB and 1 for grayscale')
parser.add_argument('--output_nc', type=int, default=3,
help='# of output image channels: 3 for RGB and 1 for grayscale')
parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in the last conv layer')
parser.add_argument('--ndf', type=int, default=64, help='# of discrim filters in the first conv layer')
parser.add_argument('--netG', type=str, default='resnet_9blocks_double',
help='specify generator architecture [resnet_9blocks | resnet_6blocks | unet_256 | unet_128]')
parser.add_argument('--norm', type=str, default='instance',
help='instance normalization or batch normalization [instance | batch | none]')
parser.add_argument('--new_norm', type=str, default='instance',
help='instance normalization or batch normalization [instance | batch | none]')
parser.add_argument('--init_type', type=str, default='normal',
help='network initialization [normal | xavier | kaiming | orthogonal]')
parser.add_argument('--init_gain', type=float, default=0.02,
help='scaling factor for normal, xavier and orthogonal.')
parser.add_argument('--no_dropout', action='store_true', help='no dropout for the generator')
parser.add_argument('--load', default='')
parser.add_argument('--no_mask', type=bool, default=True)
parser.add_argument('--hflip', dest='hflip', action='store_true')
parser.add_argument('--no_hflip', dest='hflip', action='store_false')
parser.set_defaults(hflip=False)
parser.add_argument('--resize', dest='resize', action='store_true')
parser.add_argument('--no_resize', dest='resize', action='store_false')
parser.set_defaults(resize=False)
parser.add_argument('--gan_mode', type=str, default='lsgan',
help='the type of GAN objective. [vanilla| lsgan | wgangp]. vanilla GAN loss is the cross-entropy objective used in the original GAN paper.')
parser.add_argument('--bottleneck', type=int, default=512)
parser.add_argument('--affine', dest='affine', action='store_true')
parser.set_defaults(affine=False)
parser.add_argument('--strong_kp', dest='strong_kp', action='store_true')
parser.set_defaults(strong_kp=False)
parser.add_argument('--splitted', dest='splitted', action='store_true')
parser.set_defaults(splitted=False)
args = parser.parse_args()
eval(args)