-
-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathcoral-app.py
116 lines (95 loc) · 3.88 KB
/
coral-app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# Start the server:
# python3 coral-app.py
# Submit a request via cURL:
# curl -X POST -F image=@images/test-image3.jpg 'http://localhost:5000/v1/vision/detection'
import argparse
import io
import os
import logging
import time
import flask
from PIL import Image
from pycoral.adapters import detect, common
from pycoral.utils import dataset, edgetpu
app = flask.Flask(__name__)
LOGFORMAT = "%(asctime)s %(levelname)s %(name)s %(threadName)s : %(message)s"
logging.basicConfig(filename="coral.log", level=logging.DEBUG, format=LOGFORMAT)
stderrLogger=logging.StreamHandler()
stderrLogger.setFormatter(logging.Formatter(logging.BASIC_FORMAT))
logging.getLogger().addHandler(stderrLogger)
DEFAULT_MODELS_DIRECTORY = "models"
DEFAULT_MODEL = "ssd_mobilenet_v2_coco_quant_postprocess_edgetpu.tflite"
DEFAULT_LABELS = "coco_labels.txt"
ROOT_URL = "/v1/vision/detection"
@app.route("/")
def info():
info_str = "Flask app exposing tensorflow lite model {}".format(MODEL)
return info_str
@app.route(ROOT_URL, methods=["POST"])
def predict():
data = {"success": False}
if flask.request.method == "POST":
if flask.request.form.get('min_confidence'):
threshold=float(flask.request.form['min_confidence'])
else:
threshold=float(0.4)
if flask.request.files.get("image"):
image_file = flask.request.files["image"]
image_bytes = image_file.read()
image = Image.open(io.BytesIO(image_bytes))
_, scale = common.set_resized_input(
interpreter, image.size, lambda size: image.resize(size, Image.ANTIALIAS))
# Run an inference
#start = time.perf_counter()
interpreter.invoke()
#inference_time = time.perf_counter() - start
objs = detect.get_objects(interpreter, threshold, scale)
#logging.debug('%.2f ms' % (inference_time * 1000))
if objs:
data["success"] = True
preds = []
for obj in objs:
if float(obj.score) >= float(threshold):
preds.append(
{
"confidence": float(obj.score),
"label": labels[obj.id],
"y_min": int(obj.bbox.ymin),
"x_min": int(obj.bbox.xmin),
"y_max": int(obj.bbox.ymax),
"x_max": int(obj.bbox.xmax),
}
)
data["predictions"] = preds
else:
logging.debug('No objects detected')
# return the data dictionary as a JSON response
return flask.jsonify(data)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Flask app exposing coral USB stick")
parser.add_argument(
"--models_directory",
default=DEFAULT_MODELS_DIRECTORY,
help="the directory containing the model & labels files",
)
parser.add_argument(
"--model",
default=DEFAULT_MODEL,
help="model file",
)
parser.add_argument("--labels", default=DEFAULT_LABELS, help="labels file of model")
parser.add_argument("--port", default=5000, type=int, help="port number")
args = parser.parse_args()
global MODEL
MODEL = args.model
model_file = os.path.join(args.models_directory, args.model)
assert os.path.isfile(model_file)
labels_file = os.path.join(args.models_directory, args.labels)
assert os.path.isfile(labels_file)
global labels
labels = dataset.read_label_file(labels_file)
global interpreter
interpreter = edgetpu.make_interpreter(model_file)
interpreter.allocate_tensors()
logging.debug("\n Initialised interpreter with model : {}".format(model_file))
app.run(host="0.0.0.0", debug=False, port=args.port)