-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathNLEstimateNoise.m
40 lines (34 loc) · 1.06 KB
/
NLEstimateNoise.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
function [var] = NLEstimateNoise( image, winrad, nlrad )
if( ischar(image) )
I = double(imread(image))./255;
else
I = image;
end
[rows, cols, chans] = size(I);
imlen = rows*cols;
Igray = mean(I,3);
Igray = reshape( Igray, imlen, 1 );
% Assume 0 < var <= 1.
% So, -Inf < varExp <= 0.
lastVarExp = 0;
varExp = 0;
A = NLAdjacency( image, winrad, nlrad, 1 );
for i=1:5
var = 2^(varExp);
% Adjust the matrix to reflect different denoising level.
B = A.^(1/var);
% Create Laplacian.
L = speye(size(B)) + B;
L = spdiags( sum(L,2), 0, imlen, imlen) \ L;
% Noise matrix.
N = speye(size(B)) - L;
noise = reshape( full(N*Igray), rows, cols );
% Trim to the actual denoised portion.
noise = noise( (1+winrad):(rows-winrad), (1+winrad):(cols-winrad) );
noise_spec = dct2(noise);
% Sparsity is the wrong measure. Need to find
% flatness of the spectrum.
sparsity = sum(sum(abs(noise_spec))) / (size(noise,1)*size(noise,2));
fprintf(1, 'VarExp: %d, Sparsity: %d\n', varExp, sparsity);
varExp = varExp - 1;
end