-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_lbp.py
59 lines (57 loc) · 2.36 KB
/
run_lbp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from testing import Testing
if __name__ == '__main__':
"""
testing = Testing()
testing.divide_by = 1
testing.cross_validation = True
testing.n_folds = [5,2]
testing.augmentation = False
testing.predict = 'SVM'
testing.n_processes_cv = 1
testing.n_processes_cv_last_estimator = 1
testing.n_processes_pproc =20
testing.use_pca= True
testing.use_lda= False
testing.svm__kernel = 'rbf'
testing.params_pproc['pproc__feature_extractor_name'] = ['LBP']
testing.params_pproc['pproc__size_percentage'] = [0.5, 1.0]
#testing.params_pproc['pproc__size_percentage'] = [1.0]
testing.params_lbp['pproc__feature_extractor__method'] = ['uniform', 'default']
#testing.params_lbp['pproc__feature_extractor__method'] = ['uniform']
testing.params_lbp['pproc__feature_extractor__n_tiles'] = [[1,1],[3,3],[5,5],[7,7]]
#testing.params_lbp['pproc__feature_extractor__n_tiles'] = [[1,1],[7,7]]
testing.params_auto['pca__n_components'] = [10, 30, 50, 100, 300, 500]
#testing.params_auto['pca__n_components'] = [100]
testing.params_svm['pred__C'] = [0.0001, 0.01, 0.01, 1, 100, 5000]
#testing.params_svm['pred__C'] = [1000]
testing.params_svm['pred__gamma'] = [0.0001, 0.001, 0.01, 0.1]
#testing.params_svm['pred__gamma'] = [0.001]
testing.var_sensor('LBP',datasettrain='all',sensortrain ='all',datasettest='all',sensortest ='all')
#testing.var_sensor('LBP','all','')
"""
testing = Testing()
testing.size_percentage = 1.0
testing.divide_by = 80
testing.cross_validation = False
testing.augmentation = False
testing.aug_rotate = False
testing.multi_column = False
testing.roi = False
testing.low_pass = False
testing.high_pass = False
testing.n_processes_pproc = 3
testing.n_processes_cv =1
testing.lbp__method = 'uniform'
testing.lbp__n_tiles = [1,1]
testing.predict = 'SVM'
testing.svm__kernel='rbf'
testing.svm__gamma = 0.01
testing.svm__C = 1000
#testing.predict = 'SGD'
#testing.sgd__alpha = 0.0001
testing.use_pca = True
testing.pca__n_components = 100
#testing.use_lda = True
testing.var_sensor('LBP',datasettrain='livdet2011',sensortrain ='biometrika',datasettest='livdet2013',sensortest ='italdata')
#testing.var_sensor('LBP','all','')
#"""