-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy patheval_image_classifier.py
357 lines (294 loc) · 12.8 KB
/
eval_image_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
# ------------------------------------------------------------------------------
# ActionVLAD: Learning spatio-temporal aggregation for action classification
# Copyright (c) 2017 Carnegie Mellon University and Adobe Systems Incorporated
# Please see LICENSE on https://github.com/rohitgirdhar/ActionVLAD/ for details
# ------------------------------------------------------------------------------
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Generic evaluation script that evaluates a model using a given dataset."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import os
import sys
import numpy as np
import tensorflow as tf
from tensorflow.python.platform import tf_logging as logging
from datasets import dataset_factory
from nets import nets_factory
from preprocessing import preprocessing_factory
from datasets import dataset_data_provider
slim = tf.contrib.slim
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_integer(
'batch_size', 100, 'The number of samples in each batch.')
tf.app.flags.DEFINE_integer(
'frames_per_video', 1, 'Number of frames per video.')
tf.app.flags.DEFINE_string(
'gpus', '0', 'GPUs to use for testing.')
os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpus
if len(FLAGS.gpus.strip().split(',')) > 1:
print('Multi-gpu testing not supported yet. Specify one gpu.')
sys.exit(-1)
tf.app.flags.DEFINE_integer(
'max_num_batches', None,
'Max number of batches to evaluate by default use all.')
tf.app.flags.DEFINE_string(
'master', '', 'The address of the TensorFlow master to use.')
tf.app.flags.DEFINE_string(
'checkpoint_path', '/tmp/tfmodel/',
'The directory where the model was written to or an absolute path to a '
'checkpoint file.')
# tf.app.flags.DEFINE_string(
# 'eval_dir', '/tmp/tfmodel/', 'Directory where the results are saved to.')
tf.app.flags.DEFINE_integer(
'num_preprocessing_threads', 4,
'The number of threads used to create the batches.')
tf.app.flags.DEFINE_string(
'dataset_name', 'imagenet', 'The name of the dataset to load.')
tf.app.flags.DEFINE_string(
'dataset_split_name', 'test', 'The name of the train/test split.')
tf.app.flags.DEFINE_string(
'dataset_dir', None, 'The directory where the dataset files are stored.')
tf.app.flags.DEFINE_string(
'dataset_list_dir', '/home/rgirdhar/Work/Data/018_VideoVLAD/raw/UCF101/Lists/',
'The directory where the dataset list files are stored.')
tf.app.flags.DEFINE_integer(
'labels_offset', 0,
'An offset for the labels in the dataset. This flag is primarily used to '
'evaluate the VGG and ResNet architectures which do not use a background '
'class for the ImageNet dataset.')
tf.app.flags.DEFINE_string(
'model_name', 'inception_v3', 'The name of the architecture to evaluate.')
tf.app.flags.DEFINE_string(
'preprocessing_name', None, 'The name of the preprocessing to use. If left '
'as `None`, then the model_name flag is used.')
tf.app.flags.DEFINE_string(
'bgr_flip', None, 'set true/false to turn on/off this, for each stream. Else use default.')
tf.app.flags.DEFINE_float(
'moving_average_decay', None,
'The decay to use for the moving average.'
'If left as None, then moving averages are not used.')
tf.app.flags.DEFINE_integer(
'eval_image_size', None, 'Eval image size')
tf.app.flags.DEFINE_integer(
'split_id', 1, 'Dataset split id to use.')
###########
# Pooling #
###########
tf.app.flags.DEFINE_string(
'pooling', None,
'Set =[netvlad/avg-conv] to train with that.')
tf.app.flags.DEFINE_string(
'classifier_type', 'linear',
'Classifier to use with netvlad/avg-conv. Use linear/two-layer.')
tf.app.flags.DEFINE_string('conv_endpoint', None,
'Set a non-default conv endpoint for netvlad.'
'Default for vgg16: conv5. Can set fc7.'
'Default for inceptionV2TSN is inception_5a.')
##############
# Store feat #
##############
tf.app.flags.DEFINE_string(
'store_feat', None,
'Set to comma sep list of endpoints to store.')
tf.app.flags.DEFINE_string(
'store_feat_path', None,
'Set to path of h5 file to write feats into.')
tf.app.flags.DEFINE_boolean(
'force_random_shuffle', False,
'Force random shuffle input data. Useful for storing training features for clustering.')
tf.app.flags.DEFINE_string('modality', 'rgb',
'Modality of training data.')
tf.app.flags.DEFINE_float('out_dim_scale', 1.0,
'Resize the output image by this scale. Eg, 224x '
'with 2 would be 448x images.')
tf.app.flags.DEFINE_integer('ncrops', 1,
'Number of image crops in testing. '
'Only 1 or 5 work.')
tf.app.flags.DEFINE_string('netvlad_initCenters', '',
'Path to PKL with the initial centers.')
tf.app.flags.DEFINE_string('stream_pool_type', None,
'Pool streams [concat-netvlad].')
tf.app.flags.DEFINE_integer('feat_store_compression_opt', 9,
'Compression opt for storing features.')
def main(_):
if not FLAGS.dataset_dir:
raise ValueError('You must supply the dataset directory with --dataset_dir')
if not os.path.isfile(FLAGS.checkpoint_path):
FLAGS.eval_dir = os.path.join(FLAGS.checkpoint_path, 'eval')
else:
FLAGS.eval_dir = os.path.join(
os.path.dirname(FLAGS.checkpoint_path), 'eval')
try:
os.makedirs(FLAGS.eval_dir)
except OSError:
pass
tf.logging.set_verbosity(tf.logging.INFO)
with tf.Graph().as_default():
tf_global_step = slim.get_or_create_global_step()
######################
# Select the dataset #
######################
dataset = dataset_factory.get_dataset(
FLAGS.dataset_name, FLAGS.dataset_split_name,
FLAGS.dataset_dir.split(','),
FLAGS.dataset_list_dir,
num_samples=FLAGS.frames_per_video,
modality=FLAGS.modality,
split_id=FLAGS.split_id)
####################
# Select the model #
####################
network_fn = nets_factory.get_network_fn(
FLAGS.model_name,
num_classes=(dataset.num_classes - FLAGS.labels_offset),
batch_size=FLAGS.batch_size,
is_training=False)
##############################################################
# Create a dataset provider that loads data from the dataset #
##############################################################
provider = dataset_data_provider.DatasetDataProvider(
dataset,
shuffle=FLAGS.force_random_shuffle,
common_queue_capacity=2 * FLAGS.batch_size,
common_queue_min=FLAGS.batch_size,
bgr_flips=FLAGS.bgr_flip)
[image, label] = provider.get(['image', 'label'])
label = tf.cast(tf.string_to_number(label, tf.int32),
tf.int64)
label.set_shape(())
label -= FLAGS.labels_offset
#####################################
# Select the preprocessing function #
#####################################
preprocessing_name = FLAGS.preprocessing_name or FLAGS.model_name
image_preprocessing_fn = preprocessing_factory.get_preprocessing(
preprocessing_name,
is_training=False)
eval_image_size = FLAGS.eval_image_size or network_fn.default_image_size
image = image_preprocessing_fn(image, eval_image_size, eval_image_size,
model_name=FLAGS.model_name,
ncrops=FLAGS.ncrops,
out_dim_scale=FLAGS.out_dim_scale)
images, labels = tf.train.batch(
[image, label],
batch_size=FLAGS.batch_size,
num_threads=1 if FLAGS.store_feat is not None else FLAGS.num_preprocessing_threads,
capacity=5 * FLAGS.batch_size)
####################
# Define the model #
####################
kwargs = {}
if FLAGS.conv_endpoint is not None:
kwargs['conv_endpoint'] = FLAGS.conv_endpoint
logits, end_points = network_fn(
images, pool_type=FLAGS.pooling,
classifier_type=FLAGS.classifier_type,
num_channels_stream=provider.num_channels_stream,
netvlad_centers=FLAGS.netvlad_initCenters.split(','),
stream_pool_type=FLAGS.stream_pool_type,
**kwargs)
end_points['images'] = images
end_points['labels'] = labels
if FLAGS.moving_average_decay:
variable_averages = tf.train.ExponentialMovingAverage(
FLAGS.moving_average_decay, tf_global_step)
variables_to_restore = variable_averages.variables_to_restore(
slim.get_model_variables())
variables_to_restore[tf_global_step.op.name] = tf_global_step
else:
variables_to_restore = slim.get_variables_to_restore()
predictions = tf.argmax(logits, 1)
# rgirdhar: Because of the following, can't use with batch_size=1
if FLAGS.batch_size > 1:
labels = tf.squeeze(labels)
# Define the metrics:
names_to_values, names_to_updates = slim.metrics.aggregate_metric_map({
'Accuracy': slim.metrics.streaming_accuracy(predictions, labels),
'Recall@5': slim.metrics.streaming_recall_at_k(
logits, labels, 5),
})
# Print the summaries to screen.
for name, value in names_to_values.iteritems():
summary_name = 'eval/%s' % name
op = tf.scalar_summary(summary_name, value, collections=[])
op = tf.Print(op, [value], summary_name)
tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)
# TODO(sguada) use num_epochs=1
if FLAGS.max_num_batches:
num_batches = FLAGS.max_num_batches
else:
# This ensures that we make a single pass over all of the data.
num_batches = int(math.ceil(dataset.num_samples /
float(FLAGS.batch_size)))
if tf.gfile.IsDirectory(FLAGS.checkpoint_path):
checkpoint_path = tf.train.latest_checkpoint(FLAGS.checkpoint_path)
else:
checkpoint_path = FLAGS.checkpoint_path
tf.logging.info('Evaluating %s' % checkpoint_path)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
if FLAGS.store_feat is not None:
assert(FLAGS.store_feat_path is not None)
from tensorflow.python.training import supervisor
from tensorflow.python.framework import ops
import h5py
saver = tf.train.Saver(variables_to_restore)
sv = supervisor.Supervisor(graph=ops.get_default_graph(),
logdir=None,
summary_op=None,
summary_writer=None,
global_step=None,
saver=None)
ept_names_to_store = FLAGS.store_feat.split(',')
try:
ept_to_store = [end_points[el] for el in ept_names_to_store]
except:
logging.error('Endpoint not found')
logging.error('Choose from %s' % ','.join(end_points.keys()))
raise KeyError()
res = dict([(epname, []) for epname in ept_names_to_store])
with sv.managed_session(
FLAGS.master, start_standard_services=False,
config=config) as sess:
saver.restore(sess, checkpoint_path)
sv.start_queue_runners(sess)
for j in range(num_batches):
if j % 10 == 0:
logging.info('Doing batch %d/%d' % (j, num_batches))
feats = sess.run(ept_to_store)
for eid, epname in enumerate(ept_names_to_store):
res[epname].append(feats[eid])
logging.info('Writing out features to %s' % FLAGS.store_feat_path)
with h5py.File(FLAGS.store_feat_path, 'w') as fout:
for epname in res.keys():
fout.create_dataset(epname,
data=np.concatenate(res[epname], axis=0),
compression='gzip',
compression_opts=FLAGS.feat_store_compression_opt)
else:
slim.evaluation.evaluate_once(
master=FLAGS.master,
checkpoint_path=checkpoint_path,
logdir=FLAGS.eval_dir,
num_evals=num_batches,
eval_op=names_to_updates.values(),
variables_to_restore=variables_to_restore,
session_config=config)
if __name__ == '__main__':
tf.app.run()