forked from AllanYangZhou/metalearning-symmetries
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayers.py
275 lines (233 loc) · 9.73 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
"""Custom layers."""
import math
import numpy as np
import torch
from torch import nn
from torch.nn import Module, init
from torch.nn.parameter import Parameter
import torch.nn.functional as F
class WeightNorm(Module):
append_g = "_g"
append_v = "_v"
def __init__(self, module, weights=["weight"]):
super(WeightNorm, self).__init__()
self.module = module
self.weights = weights
self._reset()
def _reset(self):
for name_w in self.weights:
w = getattr(self.module, name_w)
# construct g,v such that w = g/||v|| * v
g = torch.norm(w)
v = w / g.expand_as(w)
g = Parameter(g.data)
v = Parameter(v.data)
name_g = name_w + self.append_g
name_v = name_w + self.append_v
# remove w from parameter list
del self.module._parameters[name_w]
# add g and v as new parameters
self.module.register_parameter(name_g, g)
self.module.register_parameter(name_v, v)
def _setweights(self):
for name_w in self.weights:
name_g = name_w + self.append_g
name_v = name_w + self.append_v
g = getattr(self.module, name_g)
v = getattr(self.module, name_v)
w = v * (g / torch.norm(v)).expand_as(v)
setattr(self.module, name_w, w)
def forward(self, *args):
self._setweights()
return self.module.forward(*args)
class IdentityLinear(nn.Linear):
def __init__(self, features, softmax=False, sigmoid=False):
if softmax:
raise ValueError("Softmax not supported currently.")
self.sigmoid = sigmoid
self.temp_warp = None
super(IdentityLinear, self).__init__(features, features, bias=False)
if self.sigmoid:
self.temp_warp = nn.Parameter(torch.rand(1))
self.reset_parameters()
def reset_parameters(self):
if self.temp_warp is not None:
init._no_grad_fill_(self.temp, 5.0)
init._no_grad_fill_(self.weight, -1.0)
with torch.no_grad():
self.weight.fill_diagonal_(1.0)
else:
init.eye_(self.weight)
def forward(self, x):
weight = self.weight
if self.sigmoid:
weight = torch.sigmoid(self.temp * weight)
return F.linear(x, weight, self.bias)
class ShareLinear(Module):
def __init__(self, in_features, out_features, bias=True, sigmoid=False):
super(ShareLinear, self).__init__()
self.linear = nn.Linear(in_features, out_features, bias=bias)
self.U_warp = IdentityLinear(in_features, sigmoid=sigmoid)
self.V_warp = IdentityLinear(out_features, sigmoid=sigmoid)
def forward(self, x):
x = self.U_warp(x)
x = self.linear(x)
x = self.V_warp(x)
return x
class ShareLinearFull(Module):
def __init__(self, in_features, out_features, bias=True, latent_size=3):
super(ShareLinearFull, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.latent_params = Parameter(torch.Tensor(latent_size))
self.warp = Parameter(torch.Tensor(in_features * out_features, latent_size))
if bias:
self.bias = Parameter(torch.Tensor(out_features))
else:
self.register_parameter("bias", None)
self.reset_parameters()
def get_weight(self):
return (self.warp @ self.latent_params).view(self.out_features, self.in_features)
def reset_parameters(self):
init._no_grad_normal_(self.warp, 0, 0.01)
init._no_grad_normal_(self.latent_params, 0, 1 / self.out_features)
if self.bias is not None:
weight = self.get_weight()
fan_in, _ = init._calculate_fan_in_and_fan_out(weight)
bound = 1 / math.sqrt(fan_in)
init.uniform_(self.bias, -bound, bound)
def forward(self, x):
weight = self.get_weight()
return F.linear(x, weight, self.bias)
class Identity1x1Conv(nn.Conv2d):
def __init__(self, out_channels):
super(Identity1x1Conv, self).__init__(out_channels, out_channels, 1, bias=False)
def reset_parameters(self):
with torch.no_grad():
new_weight = torch.eye(self.out_channels, self.out_channels)[..., None, None]
self.weight = nn.Parameter(new_weight)
class ShareConv2d(nn.Conv2d):
def __init__(self, in_channels, out_channels, kernel_size, sigmoid=False, **kwargs):
self.sigmoid = sigmoid
self.A_warp, self.B_warp, self.C_warp = None, None, None
super(ShareConv2d, self).__init__(in_channels, out_channels, kernel_size, **kwargs)
k_size = int(np.prod(self.kernel_size))
self.A_warp = nn.Parameter(torch.eye(self.out_channels, self.out_channels))
self.B_warp = nn.Parameter(torch.eye(self.in_channels, self.in_channels))
self.C_warp = nn.Parameter(torch.eye(k_size, k_size))
if self.sigmoid:
self.temp_warp = nn.Parameter(torch.rand(1))
self.reset_parameters()
def reset_parameters(self):
super(ShareConv2d, self).reset_parameters()
if self.A_warp is not None:
self.reset_warp_parameters()
def reset_warp_parameters(self):
init._no_grad_fill_(self.A_warp, 0.0)
init._no_grad_fill_(self.B_warp, 0.0)
init._no_grad_fill_(self.C_warp, 0.0)
if self.sigmoid:
init._no_grad_fill_(self.temp_warp, 7.0)
init._no_grad_fill_(self.A_warp, -1.0)
init._no_grad_fill_(self.B_warp, -1.0)
init._no_grad_fill_(self.C_warp, -1.0)
with torch.no_grad():
self.A_warp.fill_diagonal_(1.0)
self.B_warp.fill_diagonal_(1.0)
self.C_warp.fill_diagonal_(1.0)
def forward(self, x):
A_warp, B_warp, C_warp = self.A_warp, self.B_warp, self.C_warp
if self.sigmoid:
A_warp = torch.sigmoid(self.temp_warp * A_warp)
B_warp = torch.sigmoid(self.temp_warp * B_warp)
C_warp = torch.sigmoid(self.temp_warp * C_warp)
orig_shape = self.weight.shape
# (c_o, c_i, k_w * k_h)
weight = torch.reshape(self.weight, (self.out_channels, self.in_channels, -1))
weight = torch.einsum("ij,jkl->ikl", A_warp, weight)
weight = torch.einsum("ik,jkl->jil", B_warp, weight)
weight = torch.einsum("il,jkl->jki", C_warp, weight)
weight = torch.reshape(weight, orig_shape)
return self.conv2d_forward(x, weight)
def _calculate_fan_in_and_fan_out(tensor):
dimensions = tensor.dim()
if dimensions < 2:
raise ValueError(
"Fan in and fan out can not be computed for tensor with fewer than 2 dimensions"
)
if dimensions == 2: # Linear
fan_in = tensor.size(1)
fan_out = tensor.size(0)
else:
num_input_fmaps = tensor.size(1)
num_output_fmaps = tensor.size(0)
receptive_field_size = 1
if 2 < tensor.dim() < 5:
receptive_field_size = tensor[0][0].numel()
if tensor.dim() >= 5: # locally connected layer: kernel is stored in last dimension.
num_input_fmaps = tensor.size(2)
num_output_fmaps = tensor.size(1)
receptive_field_size = tensor.size(-1)
fan_in = num_input_fmaps * receptive_field_size
fan_out = num_output_fmaps * receptive_field_size
return fan_in, fan_out
def _calculate_correct_fan(tensor, mode):
mode = mode.lower()
valid_modes = ["fan_in", "fan_out"]
if mode not in valid_modes:
raise ValueError("Mode {} not supported, please use one of {}".format(mode, valid_modes))
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
return fan_in if mode == "fan_in" else fan_out
def kaiming_uniform_(tensor, a=0, mode="fan_in", nonlinearity="leaky_relu"):
fan = _calculate_correct_fan(tensor, mode)
gain = init.calculate_gain(nonlinearity, a)
std = gain / math.sqrt(fan)
bound = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation
with torch.no_grad():
return tensor.uniform_(-bound, bound)
class LocallyConnected1d(nn.Module):
def __init__(
self,
in_channels,
out_channels,
output_size,
kernel_size=3,
stride=1,
bias=True,
init_method="kaiming",
):
super(LocallyConnected1d, self).__init__()
self.weight = nn.Parameter(
torch.Tensor(1, out_channels, in_channels, output_size, kernel_size)
)
if bias:
self.bias = nn.Parameter(torch.Tensor(1, out_channels, output_size))
else:
self.register_parameter("bias", None)
self.kernel_size = kernel_size
self.stride = stride
self.init_method = init_method
self.reset_parameters()
def reset_parameters(self):
if self.init_method == "kaiming":
kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = _calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in)
init.uniform_(self.bias, -bound, bound)
elif self.init_method == "normal":
init._no_grad_normal_(self.weight, 0, 1)
if self.bias is not None:
init._no_grad_normal_(self.bias, 0, 1)
else:
raise ValueError(f"Unsupported init method {self.init_method}.")
def forward(self, x):
_, _c, _w = x.size()
k, d = self.kernel_size, self.stride
x = x.unfold(2, k, d)
x = x.contiguous().view(*x.size()[:-1], -1)
# Sum in in_channel and kernel_size dims
out = (x.unsqueeze(1) * self.weight).sum([2, -1])
if self.bias is not None:
out += self.bias
return out