forked from Grid2op/grid2op
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBackend.py
860 lines (702 loc) · 35.8 KB
/
Backend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
# Copyright (c) 2019-2020, RTE (https://www.rte-france.com)
# See AUTHORS.txt
# This Source Code Form is subject to the terms of the Mozilla Public License, version 2.0.
# If a copy of the Mozilla Public License, version 2.0 was not distributed with this file,
# you can obtain one at http://mozilla.org/MPL/2.0/.
# SPDX-License-Identifier: MPL-2.0
# This file is part of Grid2Op, Grid2Op a testbed platform to model sequential decision making in power systems.
import copy
import os
import warnings
import json
from abc import ABC, abstractmethod
import numpy as np
import pandas as pd
from grid2op.dtypes import dt_int, dt_float, dt_bool
from grid2op.Exceptions import *
from grid2op.Space import GridObjects
from grid2op.Action import CompleteAction
# TODO: if chronics are "loop through" multiple times, only last results are saved. :-/
class Backend(GridObjects, ABC):
"""
This is a base class for each :class:`Backend` object.
It allows to run power flow smoothly, and abstract the method of computing cascading failures.
This class allow the user or the agent to interact with an power flow calculator, while relying on dedicated
methods to change the power grid behaviour.
An example of a valid backend is provided in the :class:`PandapowerBackend`.
All the abstract methods (that need to be implemented for a backend to work properly) are:
- :func:`Backend.load_grid`
- :func:`Backend.close`
- :func:`Backend.apply_action`
- :func:`Backend.runpf`
- :func:`Backend.copy`
- :func:`Backend.get_line_status`
- :func:`Backend.get_line_flow`
- :func:`Backend.get_topo_vect`
- :func:`Backend._disconnect_line`
- :func:`Backend.generators_info`
- :func:`Backend.loads_info`
- :func:`Backend.lines_or_info`
- :func:`Backend.lines_ex_info`
And, if the flag :attr:Backend.shunts_data_available` is set to ``True`` the method :func:`Backend.shunt_info`
should also be implemented.
Attributes
----------
detailed_infos_for_cascading_failures: :class:`bool`
Whether to be verbose when computing a cascading failure.
thermal_limit_a: :class:`numpy.array`, dtype:float
Thermal limit of the powerline in amps for each powerline. Thie thermal limit is relevant on only one
side of the powerline: the same side returned by :func:`Backend.get_line_overflow`
"""
env_name = "unknown"
def __init__(self, detailed_infos_for_cascading_failures=False):
"""
Initialize an instance of Backend. This does nothing per se. Only the call to :func:`Backend.load_grid`
should guarantee the backend is properly configured.
:param detailed_infos_for_cascading_failures: Whether to be detailed (but slow) when computing cascading failures
:type detailed_infos_for_cascading_failures: :class:`bool`
"""
GridObjects.__init__(self)
# the following parameter is used to control the amount of verbosity when computing a cascading failure
# if it's set to true, it returns all intermediate _grid states. This can slow down the computation!
self.detailed_infos_for_cascading_failures = detailed_infos_for_cascading_failures
# the power _grid manipulated. One powergrid per backend.
self._grid = None
# thermal limit setting, in ampere, at the same "side" of the powerline than self.get_line_overflow
self.thermal_limit_a = None
def assert_grid_correct_after_powerflow(self):
"""
This method is called by the environment. It ensure that the backend remains consistent even after a powerflow
has be run with :func:`Backend.runpf` method.
:return: ``None``
:raise: :class:`grid2op.Exceptions.EnvError` and possibly all of its derived class.
"""
# test the results gives the proper size
self.__class__ = self.init_grid(self)
tmp = self.get_line_status()
if tmp.shape[0] != self.n_line:
raise IncorrectNumberOfLines("returned by \"backend.get_line_status()\"")
if np.any(~np.isfinite(tmp)):
raise EnvironmentError("Power cannot be computed on the first time step, please your data.")
tmp = self.get_line_flow()
if tmp.shape[0] != self.n_line:
raise IncorrectNumberOfLines("returned by \"backend.get_line_flow()\"")
if np.any(~np.isfinite(tmp)):
raise EnvironmentError("Power cannot be computed on the first time step, please your data.")
tmp = self.get_thermal_limit()
if tmp.shape[0] != self.n_line:
raise IncorrectNumberOfLines("returned by \"backend.get_thermal_limit()\"")
if np.any(~np.isfinite(tmp)):
raise EnvironmentError("Power cannot be computed on the first time step, please your data.")
tmp = self.get_line_overflow()
if tmp.shape[0] != self.n_line:
raise IncorrectNumberOfLines("returned by \"backend.get_line_overflow()\"")
if np.any(~np.isfinite(tmp)):
raise EnvironmentError("Power cannot be computed on the first time step, please your data.")
tmp = self.generators_info()
if len(tmp) != 3:
raise EnvError("\"generators_info()\" should return a tuple with 3 elements: p, q and v")
for el in tmp:
if el.shape[0] != self.n_gen:
raise IncorrectNumberOfGenerators("returned by \"backend.generators_info()\"")
tmp = self.loads_info()
if len(tmp) != 3:
raise EnvError("\"loads_info()\" should return a tuple with 3 elements: p, q and v")
for el in tmp:
if el.shape[0] != self.n_load:
raise IncorrectNumberOfLoads("returned by \"backend.loads_info()\"")
tmp = self.lines_or_info()
if len(tmp) != 4:
raise EnvError("\"lines_or_info()\" should return a tuple with 4 elements: p, q, v and a")
for el in tmp:
if el.shape[0] != self.n_line:
raise IncorrectNumberOfLines("returned by \"backend.lines_or_info()\"")
tmp = self.lines_ex_info()
if len(tmp) != 4:
raise EnvError("\"lines_ex_info()\" should return a tuple with 4 elements: p, q, v and a")
for el in tmp:
if el.shape[0] != self.n_line:
raise IncorrectNumberOfLines("returned by \"backend.lines_ex_info()\"")
tmp = self.get_topo_vect()
if tmp.shape[0] != np.sum(self.sub_info):
raise IncorrectNumberOfElements("returned by \"backend.get_topo_vect()\"")
if np.any(~np.isfinite(tmp)):
raise EnvError("Some components of \"backend.get_topo_vect()\" are not finite. This should be integer.")
def reset(self, grid_path, grid_filename=None):
"""
Reload the power grid.
For backwards compatibility this method calls `Backend.load_grid`.
But it is encouraged to overload it in the subclasses.
"""
self.load_grid(grid_path, filename=grid_filename)
@abstractmethod
def load_grid(self, path, filename=None):
"""
Load the powergrid.
It should first define self._grid.
And then fill all the helpers used by the backend eg. all the attributes of :class:`Space.GridObjects`.
After a the call to :func:`Backend.load_grid` has been performed, the backend should be in such a state where
the :class:`grid2op.Space.GridObjects` is properly set up. See the description of
:class:`grid2op.Space.GridObjects` to know which attributes should be set here and which should not.
:param path: the path to find the powergrid
:type path: :class:`string`
:param filename: the filename of the powergrid
:type filename: :class:`string`, optional
:return: ``None``
"""
pass
@abstractmethod
def close(self):
"""
This function is called when the environment is over.
After calling this function, the backend might not behave properly, and in any case should not be used before
another call to :func:`Backend.load_grid` is performed
Returns
-------
``None``
"""
@abstractmethod
def apply_action(self, action):
"""
Modify the powergrid with the action given by an agent or by the envir.
For the L2RPN project, this action is mainly for topology if it has been sent by the agent.
Or it can also affect production and loads, if the action is made by the environment.
The help of :func:`grid2op.BaseAction.BaseAction.__call__` or the code in BaseActiontion.py file give more information about
the implementation of this method.
:param action: the action to be implemented on the powergrid.
:type action: :class:`grid2op.Action.Action`
:return: ``None``
"""
pass
@abstractmethod
def runpf(self, is_dc=False):
"""
Run a power flow on the underlying _grid.
Powerflow can be AC (is_dc = False) or DC (is_dc = True)
:param is_dc: is the powerflow run in DC or in AC
:type is_dc: :class:`bool`
:return: True if it has converged, or false otherwise. In case of non convergence, no flows can be inspected on
the _grid.
:rtype: :class:`bool`
"""
pass
@abstractmethod
def copy(self):
"""
Performs a deep copy of the backend.
:return: An instance of Backend equal to :attr:`.self`, but deep copied.
:rtype: :class:`Backend`
"""
pass
def save_file(self, full_path):
"""
Save the current power _grid in a human readable format supported by the backend.
The format is not modified by this wrapper.
This function is not mandatory, and if implemented, it is used only as a debugging purpose.
:param full_path: the full path (path + file name + extension) where *self._grid* is stored.
:type full_path: :class:`string`
:return: ``None``
"""
raise RuntimeError("Class {} does not allow for saving file.".format(self))
@abstractmethod
def get_line_status(self):
"""
Return the status of each lines (connected : True / disconnected: False )
It is assume that the order of the powerline is fixed: if the status of powerline "l1" is put at the 42nd element
of the return vector, then it should always be set at the 42nd element.
It is also assumed that all the other methods of the backend that allows to retrieve informations on the powerlines
also respect the same convention, and consistent with one another.
For example, if powerline "l1" is the 42nd second of the vector returned by :func:`Backend.get_line_status` then information
about it's flow will be at position *42* of the vector returned by :func:`Backend.get_line_flow` for example.
:return: an array with the line status of each powerline
:rtype: np.array, dtype:bool
"""
pass
@abstractmethod
def get_line_flow(self):
"""
Return the current flow in each lines of the powergrid. Only one value per powerline is returned.
If the AC mod is used, this shall return the current flow on the end of the powerline where there is a protection.
For example, if there is a protection on "origin end" of powerline "l2" then this method shall return the current
flow of at the "origin end" of powerline l2.
Note that in general, there is no loss of generality in supposing all protections are set on the "origin end" of
the powerline. So this method will return all origin line flows.
It is also possible, for a specific application, to return the maximum current flow between both ends of a power
_grid for more complex scenario.
For assumption about the order of the powerline flows return in this vector, see the help of the
:func:`Backend.get_line_status` method.
:return: an array with the line flows of each powerline
:rtype: np.array, dtype:float
"""
pass
def set_thermal_limit(self, limits):
"""
This function is used as a convenience function to set the thermal limits :attr:`Backend.thermal_limit_a`
in amperes.
It can be used at the beginning of an episode if the thermal limit are not present in the original data files
or alternatively if the thermal limits depends on the period of the year (one in winter and one in summer
for example).
Parameters
----------
limits: ``object``
It can be understood differently according to its type:
- If it's a ``numpy.ndarray``, then it is assumed the thermal limits are given in amperes in the same order
as the powerlines computed in the backend. In that case it modifies all the thermal limits of all
the powerlines at once.
- If it's a ``dict`` it must have:
- as key the powerline names (not all names are mandatory, in that case only the powerlines with the name
in this dictionnary will be modified)
- as value the new thermal limit (should be a strictly positive float).
Returns
-------
``None``
"""
if isinstance(limits, np.ndarray):
if limits.shape[0] == self.n_line:
self.thermal_limit_a = 1. * limits
elif isinstance(limits, dict):
for el in limits.keys():
if not el in self.name_line:
raise BackendError("You asked to modify the thermal limit of powerline named \"{}\" that is not "
"on the grid. Names of powerlines are {}".format(el, self.name_line))
for i, el in self.name_line:
if el in limits:
try:
tmp = dt_float(limits[el])
except:
raise BackendError("Impossible to convert data ({}) for powerline named \"{}\" into float "
"values".format(limits[el], el))
if tmp <= 0:
raise BackendError("New thermal limit for powerlines \"{}\" is not positive ({})"
"".format(el, tmp))
self.thermal_limit_a[i] = tmp
def update_thermal_limit(self, env):
"""
Upade the new thermal limit in case of DLR for example.
By default it does nothing.
Depending on the operational strategy, it is also possible to implement some
`Dynamic Line Rating <https://en.wikipedia.org/wiki/Dynamic_line_rating_for_electric_utilities>`_ (DLR)
strategies.
In this case, this function will give the thermal limit for a given time step provided the flows and the
weather condition are accessible by the backend. Our methodology doesn't make any assumption on the method
used to get these thermal limits.
Parameters
----------
env: :class:`grid2op.Environment.Environment`
The environment used to compute the thermal limit
Returns
-------
``None``
"""
pass
def get_thermal_limit(self):
"""
Gives the thermal limit (in amps) for each powerline of the _grid. Only one value per powerline is returned.
It is assumed that both :func:`Backend.get_line_flow` and *_get_thermal_limit* gives the value of the same
end of the powerline.
See the help of *_get_line_flow* for a more detailed description of this problem.
For assumption about the order of the powerline flows return in this vector, see the help of the
:func:`Backend.get_line_status` method.
:return: An array giving the thermal limit of the powerlines.
:rtype: np.array, dtype:float
"""
return self.thermal_limit_a
def get_relative_flow(self):
"""
This method return the relative flows, *eg.* the current flow divided by the thermal limits. It has a pretty
straightforward default implementation, but it can be overriden for example for transformer if the limits are
on the lower voltage side or on the upper voltage level.
Returns
-------
res: ``numpy.ndarray``, dtype: float
The relative flow in each powerlines of the grid.
"""
num_ = self.get_line_flow()
denom_ = self.get_thermal_limit()
res = np.divide(num_, denom_)
return res
def get_line_overflow(self):
"""
faster accessor to the line that are on overflow.
For assumption about the order of the powerline flows return in this vector, see the help of the
:func:`Backend.get_line_status` method.
:return: An array saying if a powerline is overflow or not
:rtype: np.array, dtype:bool
"""
th_lim = self.get_thermal_limit()
flow = self.get_line_flow()
return flow > th_lim
@abstractmethod
def get_topo_vect(self):
"""
Get the topology vector from the :attr:`Backend._grid`.
The topology vector defines, for each object, on which bus it is connected.
It returns -1 if the object is not connected.
It is a vector with as much elements (productions, loads and lines extremity) as there are in the powergrid.
For each elements, it gives on which bus it is connected in its substation.
For example, if the first element of this vector is the load of id 1, then if `res[0] = 2` it means that the
load of id 1 is connected to the second bus of its substation.
You can check which object of the powerlines is represented by each component of this vector by looking at the
`*_pos_topo_vect` (*eg.* :attr:`grid2op.Space.GridObjects.load_pos_topo_vect`) vectors.
For each elements it gives its position in this vector.
TODO make an example here on how to use this!
Returns
--------
res: `numpy.ndarray`, dtype: ``int``
An array saying to which bus the object is connected.
"""
pass
@abstractmethod
def generators_info(self):
"""
This method is used to retrieve informations about the generators.
Returns
-------
prod_p ``numpy.ndarray``
The active power production for each generator
prod_q ``numpy.ndarray``
The reactive power production for each generator
prod_v ``numpy.ndarray``
The voltage magnitude of the bus to which each generators is connected
"""
pass
@abstractmethod
def loads_info(self):
"""
This method is used to retrieve informations about the loads.
Returns
-------
load_p ``numpy.ndarray``
The active power consumption for each load
load_q ``numpy.ndarray``
The reactive power consumption for each load
load_v ``numpy.ndarray``
The voltage magnitude of the bus to which each load is connected
"""
pass
@abstractmethod
def lines_or_info(self):
"""
It returns the information extracted from the _grid at the origin end of each powerline.
For assumption about the order of the powerline flows return in this vector, see the help of the
:func:`Backend.get_line_status` method.
Returns
-------
p_or ``numpy.ndarray``
the origin active power flowing on the lines
q_or ``numpy.ndarray``
the origin reactive power flowing on the lines
v_or ``numpy.ndarray``
the voltage magnitude at the origin of each powerlines
a_or ``numpy.ndarray``
the current flow at the origin of each powerlines
"""
pass
@abstractmethod
def lines_ex_info(self):
"""
It returns the information extracted from the _grid at the extremity end of each powerline.
For assumption about the order of the powerline flows return in this vector, see the help of the
:func:`Backend.get_line_status` method.
Returns
-------
p_ex ``numpy.ndarray``
the extremity active power flowing on the lines
q_ex ``numpy.ndarray``
the extremity reactive power flowing on the lines
v_ex ``numpy.ndarray``
the voltage magnitude at the extremity of each powerlines
a_ex ``numpy.ndarray``
the current flow at the extremity of each powerlines
"""
pass
def shunt_info(self):
"""
This method is optional. If implemented, it should return the proper information about the shunt in the
powergrid.
If not implemented it returns empty list.
Note that if there are shunt on the powergrid, it is recommended that this method should be implemented before
calling :func:`Backend.check_kirchoff`.
If this method is implemented AND :func:`Backend.check_kirchoff` is called, the method
:func:`Backend.sub_from_bus_id` should also be implemented preferably.
Returns
-------
shunt_p ``numpy.ndarray``
For each shunt, the active power it withdraw at the bus to which it is connected.
shunt_q ``numpy.ndarray``
For each shunt, the reactive power it withdraw at the bus to which it is connected.
shunt_v ``numpy.ndarray``
For each shunt, the voltage magnitude of the bus to which it is connected.
shunt_bus ``numpy.ndarray``
For each shunt, the bus id to which it is connected.
"""
return [], [], [], []
def sub_from_bus_id(self, bus_id):
"""
Optionnal method that allows to get the substation if the bus id is provided.
:param bus_id:
:return: the substation to which an object connected to bus with id `bus_id` is connected to.
"""
raise Grid2OpException("This backend doesn't allow to get the substation from the bus id.")
@abstractmethod
def _disconnect_line(self, id):
"""
Disconnect the line of id "id" in the backend.
In this scenario, the *id* of a powerline is its position (counted starting from O) in the vector returned by
:func:`Backend.get_line_status` or :func:`Backend.get_line_flow` for example.
For example, if the current flow on powerline "l1" is the 42nd element of the vector returned by :func:`Backend.get_line_flow`
then :func:`Backend._disconnect_line(42)` will disconnect this same powerline "l1".
For assumption about the order of the powerline flows return in this vector, see the help of the :func:`Backend.get_line_status` method.
:param id: id of the powerline to be disconnected
:type id: int
:return: ``None``
"""
pass
def _runpf_with_diverging_exception(self, is_dc):
"""
Computes a power flow on the _grid and raises an exception in case of diverging power flow, or any other
exception that can be thrown by the backend.
:param is_dc: mode of the power flow. If *is_dc* is True, then the powerlow is run using the DC approximation otherwise it uses the AC powerflow.
:type is_dc: bool
:return: ``None``
"""
conv = False
try:
conv = self.runpf(is_dc=is_dc) # run powerflow
except:
pass
if not conv:
raise DivergingPowerFlow("Powerflow has diverged during computation.")
def next_grid_state(self, env, is_dc=False):
"""
This method is called by the environment to compute the next _grid states.
It allows to compute the powerline and approximate the "cascading failures" if there are some overflows.
Note that it **DOESNT** update the environment with the disconnected lines.
Attributes
----------
env: :class:`grid2op.Environment.Environment`
the environment in which the powerflow is ran.
is_dc: ``bool``
mode of power flow (AC : False, DC: is_dc is True)
Returns
--------
disconnected_during_cf: ``numpy.ndarray``, dtype=bool
For each powerlines, it returns ``True`` if the powerline has been disconnected due to a cascading failure
or ``False`` otherwise.
infos: ``list``
If :attr:`Backend.detailed_infos_for_cascading_failures` is ``True`` then it returns the different
state computed by the powerflow (can drastically slow down this function, as it requires
deep copy of backend object). Otherwise the list is always empty.
"""
infos = []
# print("\t\t gen p_mw {}".format(np.sum(self._grid.gen["p_mw"]))) # OK
# print("\t\t gen vm_pu {}".format(np.sum(self._grid.gen["vm_pu"]))) # OK
# print("\t\t load p_mw {}".format(np.sum(self._grid.load["p_mw"]))) # OK
# print("\t\t line in_service {}".format(np.sum(self._grid.line["in_service"]))) # OK
# print("\t\t shunt in_service {}".format(np.sum(self._grid.shunt["in_service"]))) # OK
# print("\t\t shunt q {}".format(np.sum(self._grid.shunt["q_mvar"]))) # OK
# print("\t\t load q_mvar {}".format(np.sum(self._grid.load["q_mvar"]))) # OK
# print("slack bus {}".format(self._grid["ext_grid"])) # OK
# print("slack p {}".format(self._grid._ppc["gen"][self._iref_slack, 1]))
# self._nb_bus_before = None
self._runpf_with_diverging_exception(is_dc)
disconnected_during_cf = np.full(self.n_line, fill_value=False, dtype=dt_bool)
if env.no_overflow_disconnection:
return disconnected_during_cf, infos
# the environment disconnect some
init_time_step_overflow = copy.deepcopy(env.timestep_overflow)
while True:
# simulate the cascading failure
lines_flows = self.get_line_flow()
thermal_limits = self.get_thermal_limit()
lines_status = self.get_line_status()
# a) disconnect lines on hard overflow
to_disc = lines_flows > env.hard_overflow_threshold * thermal_limits
# b) deals with soft overflow
init_time_step_overflow[ (lines_flows >= thermal_limits) & (lines_status)] += 1
to_disc[init_time_step_overflow > env.nb_timestep_overflow_allowed] = True
# disconnect the current power lines
if np.sum(to_disc[lines_status]) == 0:
# no powerlines have been disconnected at this time step, i stop the computation there
break
disconnected_during_cf[to_disc] = True
# perform the disconnection action
[self._disconnect_line(i) for i, el in enumerate(to_disc) if el]
# start a powerflow on this new state
self._runpf_with_diverging_exception(is_dc)
if self.detailed_infos_for_cascading_failures:
infos.append(self.copy())
return disconnected_during_cf, infos
def check_kirchoff(self):
"""
Check that the powergrid respects kirchhoff's law.
This function can be called at any moment to make sure a powergrid is in a consistent state, or to perform
some tests for example.
In order to function properly, this method requires that :func:`Backend.shunt_info` and
:func:`Backend.sub_from_bus_id` are properly defined. Otherwise the results might be wrong, especially
for reactive values (q_subs and q_bus bellow)
Returns
-------
p_subs ``numpy.ndarray``
sum of injected active power at each substations
q_subs ``numpy.ndarray``
sum of injected reactive power at each substations
p_bus ``numpy.ndarray``
sum of injected active power at each buses. It is given in form of a matrix, with number of substations as
row, and number of columns equal to the maximum number of buses for a substation
q_bus ``numpy.ndarray``
sum of injected reactive power at each buses. It is given in form of a matrix, with number of substations as
row, and number of columns equal to the maximum number of buses for a substation
"""
p_or, q_or, v_or, *_ = self.lines_or_info()
p_ex, q_ex, v_ex, *_ = self.lines_ex_info()
p_gen, q_gen, v_gen = self.generators_info()
p_load, q_load, v_load = self.loads_info()
# fist check the "substation law" : nothing is created at any substation
p_subs = np.zeros(self.n_sub)
q_subs = np.zeros(self.n_sub)
# check for each bus
p_bus = np.zeros((self.n_sub, 2))
q_bus = np.zeros((self.n_sub, 2))
topo_vect = self.get_topo_vect()
for i in range(self.n_line):
# for substations
p_subs[self.line_or_to_subid[i]] += p_or[i]
p_subs[self.line_ex_to_subid[i]] += p_ex[i]
q_subs[self.line_or_to_subid[i]] += q_or[i]
q_subs[self.line_ex_to_subid[i]] += q_ex[i]
# for bus
p_bus[self.line_or_to_subid[i], topo_vect[self.line_or_pos_topo_vect[i]] - 1] += p_or[i]
q_bus[self.line_or_to_subid[i], topo_vect[self.line_or_pos_topo_vect[i]] - 1] += q_or[i]
p_bus[self.line_ex_to_subid[i], topo_vect[self.line_ex_pos_topo_vect[i]] - 1] += p_ex[i]
q_bus[self.line_ex_to_subid[i], topo_vect[self.line_ex_pos_topo_vect[i]] - 1] += q_ex[i]
for i in range(self.n_gen):
# for substations
p_subs[self.gen_to_subid[i]] -= p_gen[i]
q_subs[self.gen_to_subid[i]] -= q_gen[i]
# for bus
p_bus[self.gen_to_subid[i], topo_vect[self.gen_pos_topo_vect[i]]-1] -= p_gen[i]
q_bus[self.gen_to_subid[i], topo_vect[self.gen_pos_topo_vect[i]]-1] -= q_gen[i]
for i in range(self.n_load):
# for substations
p_subs[self.load_to_subid[i]] += p_load[i]
q_subs[self.load_to_subid[i]] += q_load[i]
# for buses
p_bus[self.load_to_subid[i], topo_vect[self.load_pos_topo_vect[i]]-1] += p_load[i]
q_bus[self.load_to_subid[i], topo_vect[self.load_pos_topo_vect[i]]-1] += q_load[i]
if self.shunts_data_available:
p_s, q_s, v_s, bus_s = self.shunt_info()
for i in range(self.n_shunt):
# for substations
p_subs[self.shunt_to_subid[i]] += p_s[i]
q_subs[self.shunt_to_subid[i]] += q_s[i]
# for buses
p_bus[self.shunt_to_subid[i], bus_s[i] - 1] += p_s[i]
q_bus[self.shunt_to_subid[i], bus_s[i] - 1] += q_s[i]
else:
warnings.warn("Backend.check_kirchoff Impossible to get shunt information. Reactive information might be "
"incorrect.")
return p_subs, q_subs, p_bus, q_bus
def load_redispacthing_data(self, path, name='prods_charac.csv'):
"""
This method will load everything needed for the redispatching and unit commitment problem.
Parameters
----------
path
name
Returns
-------
"""
# for redispatching
fullpath = os.path.join(path, name)
if not os.path.exists(fullpath):
self.redispatching_unit_commitment_availble = False
return
try:
df = pd.read_csv(fullpath)
except Exception as e:
return
for el in ["type", "Pmax", "Pmin", "max_ramp_up", "max_ramp_down", "start_cost",
"shut_down_cost", "marginal_cost", "min_up_time", "min_down_time"]:
if el not in df.columns:
return
gen_info = {}
for _, row in df.iterrows():
gen_info[row["name"]] = {"type": row["type"],
"pmax": row["Pmax"],
"pmin": row["Pmin"],
"max_ramp_up": row["max_ramp_up"],
"max_ramp_down": row["max_ramp_down"],
"start_cost": row["start_cost"],
"shut_down_cost": row["shut_down_cost"],
"marginal_cost": row["marginal_cost"],
"min_up_time": row["min_up_time"],
"min_down_time": row["min_down_time"]
}
self.redispatching_unit_commitment_availble = True
self.gen_type = np.full(self.n_gen, fill_value="aaaaaaaaaa")
self.gen_pmin = np.full(self.n_gen, fill_value=1., dtype=dt_float)
self.gen_pmax = np.full(self.n_gen, fill_value=1., dtype=dt_float)
self.gen_redispatchable = np.full(self.n_gen, fill_value=False, dtype=dt_bool)
self.gen_max_ramp_up = np.full(self.n_gen, fill_value=0., dtype=dt_float)
self.gen_max_ramp_down = np.full(self.n_gen, fill_value=0., dtype=dt_float)
self.gen_min_uptime = np.full(self.n_gen, fill_value=-1, dtype=dt_int)
self.gen_min_downtime = np.full(self.n_gen, fill_value=-1, dtype=dt_int)
self.gen_cost_per_MW = np.full(self.n_gen, fill_value=1., dtype=dt_float) # marginal cost
self.gen_startup_cost = np.full(self.n_gen, fill_value=1., dtype=dt_float) # start cost
self.gen_shutdown_cost = np.full(self.n_gen, fill_value=1., dtype=dt_float) # shutdown cost
for i, gen_nm in enumerate(self.name_gen):
tmp_gen = gen_info[gen_nm]
self.gen_type[i] = str(tmp_gen["type"])
self.gen_pmin[i] = dt_float(tmp_gen["pmin"])
self.gen_pmax[i] = dt_float(tmp_gen["pmax"])
self.gen_redispatchable[i] = dt_bool(tmp_gen["type"] not in ["wind", "solar"])
tmp = dt_float(tmp_gen["max_ramp_up"])
if np.isfinite(tmp):
self.gen_max_ramp_up[i] = tmp
tmp = dt_float(tmp_gen["max_ramp_down"])
if np.isfinite(tmp):
self.gen_max_ramp_down[i] = tmp
self.gen_min_uptime[i] = dt_int(tmp_gen["min_up_time"])
self.gen_min_downtime[i] = dt_int(tmp_gen["min_down_time"])
self.gen_cost_per_MW[i] = dt_float(tmp_gen["marginal_cost"])
self.gen_startup_cost[i] = dt_float(tmp_gen["start_cost"])
self.gen_shutdown_cost[i] = dt_float(tmp_gen["shut_down_cost"])
def load_grid_layout(self, path, name='grid_layout.json'):
full_fn = os.path.join(path, name)
if not os.path.exists(full_fn):
return Exception("File {} does not exist".format(full_fn))
try:
with open(full_fn, "r") as f:
dict_ = json.load(f)
except Exception as e:
return e
new_grid_layout = {}
for el in self.name_sub:
if not el in dict_:
return Exception("substation named {} not in layout".format(el))
tmp = dict_[el]
try:
x, y = tmp
x = dt_float(x)
y = dt_float(y)
new_grid_layout[el] = (x, y)
except Exception as e_:
return Exception("fail to convert coordinates for {} into list of coordinates with error {}"
"".format(el, e_))
self.attach_layout(grid_layout=new_grid_layout)
def get_action_to_set(self):
line_status = self.get_line_status()
line_status = 2 * line_status - 1
line_status = line_status.astype(dt_int)
topo_vect = self.get_topo_vect()
prod_p, _, prod_v = self.generators_info()
load_p, load_q, _ = self.loads_info()
complete_action_class = CompleteAction.init_grid(self)
set_me = complete_action_class(self)
set_me.update({"set_line_status": line_status,
"set_bus": topo_vect})
#injs = {"prod_p": prod_p, "prod_v": prod_v,
# "load_p": load_p, "load_q": load_q}}
# set_me.update({"injection": injs})
return set_me