forked from jonzhaocn/cnnmrf-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
155 lines (132 loc) · 6.68 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from model import CNNMRF
import torch.optim as optim
from torchvision import transforms
import cv2
import argparse
import torch
import torchvision
import os
import torch.nn.functional as functional
"""
reference:
[1]. Li C, Wand M. Combining markov random fields and convolutional neural networks for image synthesis[C].
//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 2479-2486.
[2]. https://github.com/yunjey/pytorch-tutorial/blob/master/tutorials/03-advanced/neural_style_transfer/main.py
[3]. https://heartbeat.fritz.ai/neural-style-transfer-with-pytorch-49e7c1fe3bea
"""
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
def get_synthesis_image(synthesis, denorm, device):
"""
get synthesis image from tensor to numpy array
:param synthesis: synthesis image tensor
:param denorm: denorm transform
:return:
"""
cpu_device = torch.device('cpu')
# move image to cpu before denormalizing according to
# https://github.com/JZhaoCH/cnnmrf-pytorch/issues/1 and https://github.com/JZhaoCH/cnnmrf-pytorch/issues/2
image = synthesis.clone().squeeze().to(cpu_device)
image = denorm(image)
# finally move image back to device
return image.to(device).clamp_(0, 1)
def unsample_synthesis(height, width, synthesis, device):
"""
unsample synthesis image to next level of training
:param height: height of unsampled image
:param width: width of unsampled image
:param synthesis: synthesis image tensor to unsample
:param device:
:return:
"""
# transform the tensor to numpy, and upsampled as a image
synthesis = functional.interpolate(synthesis, size=[height, width], mode='bilinear')
# finally, set requires grad, the node will be leaf node and require grad
synthesis = synthesis.clone().detach().requires_grad_(True).to(device)
return synthesis
def main(config):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
"-------------------transform and denorm transform-----------------"
# VGGNet was trained on ImageNet where images are normalized by mean=[0.485, 0.456, 0.406]
# and std=[0.229, 0.224, 0.225].
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))])
denorm_transform = transforms.Normalize(mean=(-2.12, -2.04, -1.80), std=(4.37, 4.46, 4.44))
"--------------read image------------------"
if not os.path.exists(config.content_path):
raise ValueError('file %s does not exist.' % config.content_path)
if not os.path.exists(config.style_path):
raise ValueError('file %s does not exist.' % config.style_path)
content_image = cv2.imread(config.content_path)
content_image = cv2.cvtColor(content_image, cv2.COLOR_BGR2RGB)
content_image = transform(content_image).unsqueeze(0).to(device)
style_image = cv2.imread(config.style_path)
style_image = cv2.cvtColor(style_image, cv2.COLOR_BGR2RGB)
style_image = transform(style_image).unsqueeze(0).to(device)
"resize image in several level for training"
pyramid_content_image = []
pyramid_style_image = []
for i in range(config.num_res):
content = functional.interpolate(content_image, scale_factor=1/pow(2, config.num_res-1-i), mode='bilinear')
style = functional.interpolate(style_image, scale_factor=1/pow(2, config.num_res-1-i), mode='bilinear')
pyramid_content_image.append(content)
pyramid_style_image.append(style)
"-----------------start training-------"
global iter
iter = 0
synthesis = None
# create cnnmrf model
cnnmrf = CNNMRF(style_image=pyramid_style_image[0], content_image=pyramid_content_image[0], device=device,
content_weight=config.content_weight, style_weight=config.style_weight, tv_weight=config.tv_weight,
gpu_chunck_size=config.gpu_chunck_size, mrf_synthesis_stride=config.mrf_synthesis_stride,
mrf_style_stride=config.mrf_style_stride).to(device)
# Sets the module in training mode.
cnnmrf.train()
for i in range(0, config.num_res):
# synthesis = torch.rand_like(content_image, requires_grad=True)
if i == 0:
# in lowest level init the synthesis from content resized image
synthesis = pyramid_content_image[0].clone().requires_grad_(True).to(device)
else:
# in high level init the synthesis from unsampling the upper level synthesis
synthesis = unsample_synthesis(pyramid_content_image[i].shape[2], pyramid_content_image[i].shape[3], synthesis, device)
cnnmrf.update_style_and_content_image(style_image=pyramid_style_image[i], content_image=pyramid_content_image[i])
# max_iter (int): maximal number of iterations per optimization step
optimizer = optim.LBFGS([synthesis], lr=1, max_iter=config.max_iter)
"--------------------"
def closure():
global iter
optimizer.zero_grad()
loss = cnnmrf(synthesis)
loss.backward(retain_graph=True)
# print loss
if (iter + 1) % 10 == 0:
print('res-%d-iteration-%d: %f' % (i+1, iter + 1, loss.item()))
# save image
if (iter + 1) % config.sample_step == 0 or iter + 1 == config.max_iter:
image = get_synthesis_image(synthesis, denorm_transform, device)
image = functional.interpolate(image.unsqueeze(0), size=content_image.shape[2:4], mode='bilinear')
torchvision.utils.save_image(image.squeeze(), 'res-%d-result-%d.jpg' % (i+1, iter + 1))
print('save image: res-%d-result-%d.jpg' % (i+1, iter + 1))
iter += 1
if iter == config.max_iter:
iter = 0
return loss
"----------------------"
optimizer.step(closure)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--content_path', type=str, default='./data/content1.jpg')
parser.add_argument('--style_path', type=str, default='./data/style1.jpg')
parser.add_argument('--max_iter', type=int, default=100)
parser.add_argument('--sample_step', type=int, default=50)
parser.add_argument('--content_weight', type=float, default=1)
parser.add_argument('--style_weight', type=float, default=0.4)
parser.add_argument('--tv_weight', type=float, default=0.1)
parser.add_argument('--num_res', type=int, default=3)
parser.add_argument('--gpu_chunck_size', type=int, default=512)
parser.add_argument('--mrf_style_stride', type=int, default=2)
parser.add_argument('--mrf_synthesis_stride', type=int, default=2)
config = parser.parse_args()
print(config)
main(config)