forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAdaptivePooling.h
41 lines (32 loc) · 1.62 KB
/
AdaptivePooling.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#pragma once
#include <ATen/core/Tensor.h>
#include <ATen/native/DispatchStub.h>
#include <c10/util/ArrayRef.h>
#include <c10/util/irange.h>
#include <cmath>
namespace at {
namespace native {
using adaptive_avg_pooling_fn = void(*)(Tensor& output, const Tensor& input, IntArrayRef output_size);
using adaptive_avg_pooling_backward_fn = void(*)(Tensor& grad_input, const Tensor& grad_output);
DECLARE_DISPATCH(adaptive_avg_pooling_fn, adaptive_avg_pool2d_kernel);
DECLARE_DISPATCH(adaptive_avg_pooling_backward_fn, adaptive_avg_pool2d_backward_kernel);
using adaptive_max_pooling_fn = void(*)(const Tensor& output, const Tensor& indices, const Tensor& input, IntArrayRef output_size);
using adaptive_max_pooling_backward_fn = void(*)(const Tensor& grad_input, const Tensor& grad_output, const Tensor& indices);
DECLARE_DISPATCH(adaptive_max_pooling_fn, adaptive_max_pool2d_kernel);
DECLARE_DISPATCH(adaptive_max_pooling_backward_fn, adaptive_max_pool2d_backward_kernel);
static inline int64_t start_index(int64_t a, int64_t b, int64_t c) {
return (a / b) * c + ((a % b) * c) / b;
}
static inline int64_t end_index(int64_t a, int64_t b, int64_t c) {
return 1 + ((a + 1) * c - 1) / b;
}
static inline void adaptive_pool_empty_output_check(const Tensor& gradOutput_, const char* arg_name) {
int64_t ndim = gradOutput_.ndimension();
for (const auto i : c10::irange(1, ndim)) {
TORCH_CHECK(gradOutput_.size(i) > 0,
arg_name, "(): Expected grad_output to have non-zero size for non-batch dimensions, "
"but grad_output has sizes ", gradOutput_.sizes(), " with dimension ", i,
" being empty");
}
}
}} // namespace at::native