forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathActivationSoftshrinkKernel.cu
58 lines (49 loc) · 1.63 KB
/
ActivationSoftshrinkKernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#define TORCH_ASSERT_NO_OPERATORS
#define _USE_MATH_DEFINES
#include <ATen/native/Activation.h>
#include <cmath>
#include <thrust/tuple.h>
#include <ATen/AccumulateType.h>
#include <ATen/Dispatch.h>
#include <ATen/core/TensorBase.h>
#include <c10/core/Scalar.h>
#include <c10/cuda/CUDAMathCompat.h>
#include <ATen/cuda/ApplyGridUtils.cuh>
#include <ATen/cuda/detail/OffsetCalculator.cuh>
#include <ATen/native/cuda/Loops.cuh>
namespace at::native {
namespace {
void softshrink_kernel(TensorIteratorBase& iter, const Scalar& value) {
AT_DISPATCH_FLOATING_TYPES_AND2(
at::ScalarType::Half,
at::ScalarType::BFloat16,
iter.dtype(),
"softshrink_cuda",
[&]() {
auto lambd = value.to<scalar_t>();
gpu_kernel(iter, [lambd] GPU_LAMBDA(scalar_t a) -> scalar_t {
return a > lambd ? a - lambd : (a < -lambd ? a + lambd : scalar_t(0));
});
});
}
void shrink_backward_kernel(TensorIteratorBase& iter, const Scalar& value) {
AT_DISPATCH_FLOATING_TYPES_AND2(
at::ScalarType::Half,
at::ScalarType::BFloat16,
iter.dtype(),
"shrink_backward_cuda",
[&]() {
auto lambd = value.to<scalar_t>();
gpu_kernel(
iter,
[lambd] GPU_LAMBDA(
scalar_t grad_val, scalar_t self_val) -> scalar_t {
return (self_val >= -lambd && self_val <= lambd) ? scalar_t(0)
: grad_val;
});
});
}
} // namespace
REGISTER_DISPATCH(softshrink_stub, &softshrink_kernel);
REGISTER_DISPATCH(shrink_backward_stub, &shrink_backward_kernel);
} // namespace at::native