forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtensor_options.cpp
161 lines (124 loc) · 4.9 KB
/
tensor_options.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#include <gtest/gtest.h>
#include <test/cpp/api/support.h>
#include <torch/torch.h>
#include <string>
#include <vector>
using namespace at;
using namespace torch::test;
// A macro so we don't lose location information when an assertion fails.
#define REQUIRE_OPTIONS(device_, index_, type_, layout_) \
ASSERT_EQ(options.device().type(), Device((device_), (index_)).type()); \
ASSERT_TRUE( \
options.device().index() == Device((device_), (index_)).index()); \
ASSERT_EQ(options.dtype(), (type_)); \
ASSERT_TRUE(options.layout() == (layout_))
#define REQUIRE_TENSOR_OPTIONS(device_, index_, type_, layout_) \
ASSERT_EQ(tensor.device().type(), Device((device_), (index_)).type()); \
ASSERT_EQ(tensor.device().index(), Device((device_), (index_)).index()); \
ASSERT_EQ(tensor.scalar_type(), (type_)); \
ASSERT_TRUE(tensor.options().layout() == (layout_))
TEST(TensorOptionsTest, DefaultsToTheRightValues) {
TensorOptions options;
REQUIRE_OPTIONS(kCPU, -1, kFloat, kStrided);
}
TEST(TensorOptionsTest, UtilityFunctionsReturnTheRightTensorOptions) {
auto options = dtype(kInt);
REQUIRE_OPTIONS(kCPU, -1, kInt, kStrided);
options = layout(kSparse);
REQUIRE_OPTIONS(kCPU, -1, kFloat, kSparse);
options = device({kCUDA, 1});
REQUIRE_OPTIONS(kCUDA, 1, kFloat, kStrided);
options = device_index(1);
REQUIRE_OPTIONS(kCUDA, 1, kFloat, kStrided);
options = dtype(kByte).layout(kSparse).device(kCUDA, 2).device_index(3);
REQUIRE_OPTIONS(kCUDA, 3, kByte, kSparse);
}
TEST(TensorOptionsTest, ConstructsWellFromCPUTypes) {
TensorOptions options;
REQUIRE_OPTIONS(kCPU, -1, kFloat, kStrided);
options = TensorOptions({kCPU, 0});
REQUIRE_OPTIONS(kCPU, 0, kFloat, kStrided);
options = TensorOptions("cpu:0");
REQUIRE_OPTIONS(kCPU, 0, kFloat, kStrided);
options = TensorOptions(kInt);
REQUIRE_OPTIONS(kCPU, -1, kInt, kStrided);
options =
TensorOptions(getDeprecatedTypeProperties(Backend::SparseCPU, kFloat));
REQUIRE_OPTIONS(kCPU, -1, kFloat, kSparse);
options =
TensorOptions(getDeprecatedTypeProperties(Backend::SparseCPU, kByte));
REQUIRE_OPTIONS(kCPU, -1, kByte, kSparse);
}
TEST(TensorOptionsTest, ConstructsWellFromCPUTensors) {
auto options = empty(5, kDouble).options();
REQUIRE_OPTIONS(kCPU, -1, kDouble, kStrided);
options = empty(5, getDeprecatedTypeProperties(Backend::SparseCPU, kByte))
.options();
REQUIRE_OPTIONS(kCPU, -1, kByte, kSparse);
}
TEST(TensorOptionsTest, ConstructsWellFromVariables) {
auto options = torch::empty(5).options();
REQUIRE_OPTIONS(kCPU, -1, kFloat, kStrided);
ASSERT_FALSE(options.requires_grad());
options = torch::empty(5, at::requires_grad()).options();
REQUIRE_OPTIONS(kCPU, -1, kFloat, kStrided);
ASSERT_FALSE(options.requires_grad());
}
TEST(DeviceTest, ParsesCorrectlyFromString) {
Device device("cpu:0");
ASSERT_EQ(device, Device(DeviceType::CPU, 0));
device = Device("cpu");
ASSERT_EQ(device, Device(DeviceType::CPU));
device = Device("cuda:123");
ASSERT_EQ(device, Device(DeviceType::CUDA, 123));
device = Device("cuda");
ASSERT_EQ(device, Device(DeviceType::CUDA));
device = Device("mkldnn");
ASSERT_EQ(device, Device(DeviceType::MKLDNN));
device = Device("opengl");
ASSERT_EQ(device, Device(DeviceType::OPENGL));
device = Device("opencl");
ASSERT_EQ(device, Device(DeviceType::OPENCL));
device = Device("ideep");
ASSERT_EQ(device, Device(DeviceType::IDEEP));
device = Device("hip");
ASSERT_EQ(device, Device(DeviceType::HIP));
device = Device("hip:123");
ASSERT_EQ(device, Device(DeviceType::HIP, 123));
std::vector<std::string> badnesses = {
"", "cud:1", "cuda:", "cpu::1", ":1", "3", "tpu:4", "??"};
for (const auto& badness : badnesses) {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-goto,hicpp-avoid-goto)
ASSERT_ANY_THROW({ Device d(badness); });
}
}
TEST(DefaultDtypeTest, CanSetAndGetDefaultDtype) {
AutoDefaultDtypeMode dtype_mode(kFloat);
ASSERT_EQ(at::get_default_dtype(), kFloat);
set_default_dtype(caffe2::TypeMeta::Make<int>());
ASSERT_EQ(at::get_default_dtype(), kInt);
}
TEST(DefaultDtypeTest, NewTensorOptionsHasCorrectDefault) {
AutoDefaultDtypeMode dtype_mode(kFloat);
set_default_dtype(caffe2::TypeMeta::Make<int>());
ASSERT_EQ(at::get_default_dtype(), kInt);
TensorOptions options;
ASSERT_EQ(options.dtype(), kInt);
}
TEST(DefaultDtypeTest, NewTensorsHaveCorrectDefaultDtype) {
AutoDefaultDtypeMode dtype_mode(kFloat);
set_default_dtype(caffe2::TypeMeta::Make<int>());
{
auto tensor = torch::ones(5);
ASSERT_EQ(tensor.dtype(), kInt);
}
set_default_dtype(caffe2::TypeMeta::Make<double>());
{
auto tensor = torch::ones(5);
ASSERT_EQ(tensor.dtype(), kDouble);
}
{
auto tensor = torch::ones(5, kFloat);
ASSERT_EQ(tensor.dtype(), kFloat);
}
}