forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_datapipe.py
3336 lines (2742 loc) · 133 KB
/
test_datapipe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Owner(s): ["module: dataloader"]
import copy
import itertools
import os
import os.path
import pickle
import random
import sys
import tempfile
import warnings
from functools import partial
from typing import (
Any,
Awaitable,
Dict,
Generic,
Iterator,
List,
NamedTuple,
Optional,
Set,
Tuple,
Type,
TypeVar,
Union,
)
from unittest import skipIf
import numpy as np
import torch
import torch.utils.data.datapipes as dp
import torch.utils.data.graph
import torch.utils.data.graph_settings
from torch.testing._internal.common_utils import TestCase, run_tests, suppress_warnings, skipIfTorchDynamo
from torch.utils.data import (
DataLoader,
DataChunk,
IterDataPipe,
MapDataPipe,
RandomSampler,
argument_validation,
runtime_validation,
runtime_validation_disabled,
)
from torch.utils.data.graph import traverse_dps
from torch.utils.data.datapipes.utils.common import StreamWrapper
from torch.utils.data.datapipes.utils.decoder import (
basichandlers as decoder_basichandlers,
)
from torch.utils.data.datapipes.utils.snapshot import (
_simple_graph_snapshot_restoration
)
from torch.utils.data.datapipes.dataframe import CaptureDataFrame
from torch.utils.data.datapipes.dataframe import dataframe_wrapper as df_wrapper
from torch.utils.data.datapipes.iter.grouping import SHARDING_PRIORITIES
try:
import dill
# XXX: By default, dill writes the Pickler dispatch table to inject its
# own logic there. This globally affects the behavior of the standard library
# pickler for any user who transitively depends on this module!
# Undo this extension to avoid altering the behavior of the pickler globally.
dill.extend(use_dill=False)
HAS_DILL = True
except ImportError:
HAS_DILL = False
skipIfNoDill = skipIf(not HAS_DILL, "no dill")
try:
import pandas # type: ignore[import] # noqa: F401 F403
HAS_PANDAS = True
except ImportError:
HAS_PANDAS = False
skipIfNoDataFrames = skipIf(not HAS_PANDAS, "no dataframes (pandas)")
skipTyping = skipIf(True, "TODO: Fix typing bug")
T_co = TypeVar("T_co", covariant=True)
def create_temp_dir_and_files():
# The temp dir and files within it will be released and deleted in tearDown().
# Adding `noqa: P201` to avoid mypy's warning on not releasing the dir handle within this function.
temp_dir = tempfile.TemporaryDirectory() # noqa: P201
temp_dir_path = temp_dir.name
with tempfile.NamedTemporaryFile(dir=temp_dir_path, delete=False, suffix='.txt') as f:
temp_file1_name = f.name
with tempfile.NamedTemporaryFile(dir=temp_dir_path, delete=False, suffix='.byte') as f:
temp_file2_name = f.name
with tempfile.NamedTemporaryFile(dir=temp_dir_path, delete=False, suffix='.empty') as f:
temp_file3_name = f.name
with open(temp_file1_name, 'w') as f1:
f1.write('0123456789abcdef')
with open(temp_file2_name, 'wb') as f2:
f2.write(b"0123456789abcdef")
temp_sub_dir = tempfile.TemporaryDirectory(dir=temp_dir_path) # noqa: P201
temp_sub_dir_path = temp_sub_dir.name
with tempfile.NamedTemporaryFile(dir=temp_sub_dir_path, delete=False, suffix='.txt') as f:
temp_sub_file1_name = f.name
with tempfile.NamedTemporaryFile(dir=temp_sub_dir_path, delete=False, suffix='.byte') as f:
temp_sub_file2_name = f.name
with open(temp_sub_file1_name, 'w') as f1:
f1.write('0123456789abcdef')
with open(temp_sub_file2_name, 'wb') as f2:
f2.write(b"0123456789abcdef")
return [(temp_dir, temp_file1_name, temp_file2_name, temp_file3_name),
(temp_sub_dir, temp_sub_file1_name, temp_sub_file2_name)]
def reset_after_n_next_calls(datapipe: Union[IterDataPipe[T_co], MapDataPipe[T_co]],
n: int) -> Tuple[List[T_co], List[T_co]]:
"""
Given a DataPipe and integer n, iterate the DataPipe for n elements and store the elements into a list
Then, reset the DataPipe and return a tuple of two lists
1. A list of elements yielded before the reset
2. A list of all elements of the DataPipe after the reset
"""
it = iter(datapipe)
res_before_reset = []
for _ in range(n):
res_before_reset.append(next(it))
return res_before_reset, list(datapipe)
def odd_or_even(x: int) -> int:
return x % 2
class TestDataChunk(TestCase):
def setUp(self):
self.elements = list(range(10))
random.shuffle(self.elements)
self.chunk: DataChunk[int] = DataChunk(self.elements)
def test_getitem(self):
for i in range(10):
self.assertEqual(self.elements[i], self.chunk[i])
def test_iter(self):
for ele, dc in zip(self.elements, iter(self.chunk)):
self.assertEqual(ele, dc)
def test_len(self):
self.assertEqual(len(self.elements), len(self.chunk))
def test_as_string(self):
self.assertEqual(str(self.chunk), str(self.elements))
batch = [self.elements] * 3
chunks: List[DataChunk[int]] = [DataChunk(self.elements)] * 3
self.assertEqual(str(batch), str(chunks))
def test_sort(self):
chunk: DataChunk[int] = DataChunk(self.elements)
chunk.sort()
self.assertTrue(isinstance(chunk, DataChunk))
for i, d in enumerate(chunk):
self.assertEqual(i, d)
def test_reverse(self):
chunk: DataChunk[int] = DataChunk(self.elements)
chunk.reverse()
self.assertTrue(isinstance(chunk, DataChunk))
for i in range(10):
self.assertEqual(chunk[i], self.elements[9 - i])
def test_random_shuffle(self):
elements = list(range(10))
chunk: DataChunk[int] = DataChunk(elements)
rng = random.Random(0)
rng.shuffle(chunk)
rng = random.Random(0)
rng.shuffle(elements)
self.assertEqual(chunk, elements)
class TestStreamWrapper(TestCase):
class _FakeFD:
def __init__(self, filepath):
self.filepath = filepath
self.opened = False
self.closed = False
def open(self):
self.opened = True
def read(self):
if self.opened:
return "".join(self)
else:
raise IOError("Cannot read from un-opened file descriptor")
def __iter__(self):
for i in range(5):
yield str(i)
def close(self):
if self.opened:
self.opened = False
self.closed = True
def __repr__(self):
return "FakeFD"
def test_dir(self):
fd = TestStreamWrapper._FakeFD("")
wrap_fd = StreamWrapper(fd)
s = set(dir(wrap_fd))
for api in ['open', 'read', 'close']:
self.assertTrue(api in s)
@skipIfTorchDynamo
def test_api(self):
fd = TestStreamWrapper._FakeFD("")
wrap_fd = StreamWrapper(fd)
self.assertFalse(fd.opened)
self.assertFalse(fd.closed)
with self.assertRaisesRegex(IOError, "Cannot read from"):
wrap_fd.read()
wrap_fd.open()
self.assertTrue(fd.opened)
self.assertEqual("01234", wrap_fd.read())
del wrap_fd
self.assertFalse(fd.opened)
self.assertTrue(fd.closed)
def test_pickle(self):
with tempfile.TemporaryFile() as f:
with self.assertRaises(TypeError) as ctx1:
pickle.dumps(f)
wrap_f = StreamWrapper(f)
with self.assertRaises(TypeError) as ctx2:
pickle.dumps(wrap_f)
# Same exception when pickle
self.assertEqual(str(ctx1.exception), str(ctx2.exception))
fd = TestStreamWrapper._FakeFD("")
wrap_fd = StreamWrapper(fd)
_ = pickle.loads(pickle.dumps(wrap_fd))
def test_repr(self):
fd = TestStreamWrapper._FakeFD("")
wrap_fd = StreamWrapper(fd)
self.assertEqual(str(wrap_fd), "StreamWrapper<FakeFD>")
with tempfile.TemporaryFile() as f:
wrap_f = StreamWrapper(f)
self.assertEqual(str(wrap_f), "StreamWrapper<" + str(f) + ">")
class TestIterableDataPipeBasic(TestCase):
def setUp(self):
ret = create_temp_dir_and_files()
self.temp_dir = ret[0][0]
self.temp_files = ret[0][1:]
self.temp_sub_dir = ret[1][0]
self.temp_sub_files = ret[1][1:]
def tearDown(self):
try:
self.temp_sub_dir.cleanup()
self.temp_dir.cleanup()
except Exception as e:
warnings.warn("TestIterableDatasetBasic was not able to cleanup temp dir due to {}".format(str(e)))
def test_listdirfiles_iterable_datapipe(self):
temp_dir = self.temp_dir.name
datapipe: IterDataPipe = dp.iter.FileLister(temp_dir, '')
count = 0
for pathname in datapipe:
count = count + 1
self.assertTrue(pathname in self.temp_files)
self.assertEqual(count, len(self.temp_files))
count = 0
datapipe = dp.iter.FileLister(temp_dir, '', recursive=True)
for pathname in datapipe:
count = count + 1
self.assertTrue((pathname in self.temp_files) or (pathname in self.temp_sub_files))
self.assertEqual(count, len(self.temp_files) + len(self.temp_sub_files))
temp_files = self.temp_files
datapipe = dp.iter.FileLister([temp_dir, *temp_files])
count = 0
for pathname in datapipe:
count += 1
self.assertTrue(pathname in self.temp_files)
self.assertEqual(count, 2 * len(self.temp_files))
# test functional API
datapipe = datapipe.list_files()
count = 0
for pathname in datapipe:
count += 1
self.assertTrue(pathname in self.temp_files)
self.assertEqual(count, 2 * len(self.temp_files))
def test_listdirfilesdeterministic_iterable_datapipe(self):
temp_dir = self.temp_dir.name
datapipe = dp.iter.FileLister(temp_dir, '')
# The output order should be always the same.
self.assertEqual(list(datapipe), list(datapipe))
datapipe = dp.iter.FileLister(temp_dir, '', recursive=True)
# The output order should be always the same.
self.assertEqual(list(datapipe), list(datapipe))
def test_openfilesfromdisk_iterable_datapipe(self):
# test import datapipe class directly
from torch.utils.data.datapipes.iter import (
FileLister,
FileOpener,
)
temp_dir = self.temp_dir.name
datapipe1 = FileLister(temp_dir, '')
datapipe2 = FileOpener(datapipe1, mode='b')
count = 0
for rec in datapipe2:
count = count + 1
self.assertTrue(rec[0] in self.temp_files)
with open(rec[0], 'rb') as f:
self.assertEqual(rec[1].read(), f.read())
rec[1].close()
self.assertEqual(count, len(self.temp_files))
# functional API
datapipe3 = datapipe1.open_files(mode='b')
count = 0
for rec in datapipe3:
count = count + 1
self.assertTrue(rec[0] in self.temp_files)
with open(rec[0], 'rb') as f:
self.assertEqual(rec[1].read(), f.read())
rec[1].close()
self.assertEqual(count, len(self.temp_files))
# __len__ Test
with self.assertRaises(TypeError):
len(datapipe3)
def test_routeddecoder_iterable_datapipe(self):
temp_dir = self.temp_dir.name
temp_pngfile_pathname = os.path.join(temp_dir, "test_png.png")
png_data = np.array([[[1., 0., 0.], [1., 0., 0.]], [[1., 0., 0.], [1., 0., 0.]]], dtype=np.single)
np.save(temp_pngfile_pathname, png_data)
datapipe1 = dp.iter.FileLister(temp_dir, ['*.png', '*.txt'])
datapipe2 = dp.iter.FileOpener(datapipe1, mode='b')
def _png_decoder(extension, data):
if extension != 'png':
return None
return np.load(data)
def _helper(prior_dp, dp, channel_first=False):
# Byte stream is not closed
for inp in prior_dp:
self.assertFalse(inp[1].closed)
for inp, rec in zip(prior_dp, dp):
ext = os.path.splitext(rec[0])[1]
if ext == '.png':
expected = np.array([[[1., 0., 0.], [1., 0., 0.]], [[1., 0., 0.], [1., 0., 0.]]], dtype=np.single)
if channel_first:
expected = expected.transpose(2, 0, 1)
self.assertEqual(rec[1], expected)
else:
with open(rec[0], 'rb') as f:
self.assertEqual(rec[1], f.read().decode('utf-8'))
# Corresponding byte stream is closed by Decoder
self.assertTrue(inp[1].closed)
cached = list(datapipe2)
with warnings.catch_warnings(record=True) as wa:
datapipe3 = dp.iter.RoutedDecoder(cached, _png_decoder)
datapipe3.add_handler(decoder_basichandlers)
_helper(cached, datapipe3)
cached = list(datapipe2)
with warnings.catch_warnings(record=True) as wa:
datapipe4 = dp.iter.RoutedDecoder(cached, decoder_basichandlers)
datapipe4.add_handler(_png_decoder)
_helper(cached, datapipe4, channel_first=True)
def test_groupby_iterable_datapipe(self):
file_list = ["a.png", "b.png", "c.json", "a.json", "c.png", "b.json", "d.png",
"d.json", "e.png", "f.json", "g.png", "f.png", "g.json", "e.json",
"h.txt", "h.json"]
import io
datapipe1 = dp.iter.IterableWrapper([(filename, io.BytesIO(b'12345abcde')) for filename in file_list])
def group_fn(data):
filepath, _ = data
return os.path.basename(filepath).split(".")[0]
datapipe2 = dp.iter.Grouper(datapipe1, group_key_fn=group_fn, group_size=2)
def order_fn(data):
data.sort(key=lambda f: f[0], reverse=True)
return data
datapipe3 = dp.iter.Mapper(datapipe2, fn=order_fn) # type: ignore[var-annotated]
expected_result = [
("a.png", "a.json"), ("c.png", "c.json"), ("b.png", "b.json"), ("d.png", "d.json"),
("f.png", "f.json"), ("g.png", "g.json"), ("e.png", "e.json"), ("h.txt", "h.json")]
count = 0
for rec, expected in zip(datapipe3, expected_result):
count = count + 1
self.assertEqual(os.path.basename(rec[0][0]), expected[0])
self.assertEqual(os.path.basename(rec[1][0]), expected[1])
for i in [0, 1]:
self.assertEqual(rec[i][1].read(), b'12345abcde')
rec[i][1].close()
self.assertEqual(count, 8)
def test_demux_mux_datapipe(self):
numbers = NumbersDataset(10)
n1, n2 = numbers.demux(2, lambda x: x % 2)
self.assertEqual([0, 2, 4, 6, 8], list(n1))
self.assertEqual([1, 3, 5, 7, 9], list(n2))
# Functional Test: demux and mux works sequentially as expected
numbers = NumbersDataset(10)
n1, n2, n3 = numbers.demux(3, lambda x: x % 3)
n = n1.mux(n2, n3)
self.assertEqual(list(range(9)), list(n))
# Functional Test: Uneven DataPipes
source_numbers = list(range(0, 10)) + [10, 12]
numbers_dp = dp.iter.IterableWrapper(source_numbers)
n1, n2 = numbers_dp.demux(2, lambda x: x % 2)
self.assertEqual([0, 2, 4, 6, 8, 10, 12], list(n1))
self.assertEqual([1, 3, 5, 7, 9], list(n2))
n = n1.mux(n2)
self.assertEqual(list(range(10)), list(n))
@suppress_warnings # Suppress warning for lambda fn
def test_map_with_col_file_handle_datapipe(self):
temp_dir = self.temp_dir.name
datapipe1 = dp.iter.FileLister(temp_dir, '')
datapipe2 = dp.iter.FileOpener(datapipe1)
def _helper(datapipe):
dp1 = datapipe.map(lambda x: x.read(), input_col=1)
dp2 = datapipe.map(lambda x: (x[0], x[1].read()))
self.assertEqual(list(dp1), list(dp2))
# tuple
_helper(datapipe2)
# list
datapipe3 = datapipe2.map(lambda x: list(x))
_helper(datapipe3)
@skipIfNoDataFrames
class TestCaptureDataFrame(TestCase):
def get_new_df(self):
return df_wrapper.create_dataframe([[1, 2]], columns=['a', 'b'])
def compare_capture_and_eager(self, operations):
cdf = CaptureDataFrame()
cdf = operations(cdf)
df = self.get_new_df()
cdf = cdf.apply_ops(df)
df = self.get_new_df()
df = operations(df)
self.assertTrue(df.equals(cdf))
def test_basic_capture(self):
def operations(df):
df['c'] = df.b + df['a'] * 7
# somehow swallows pandas UserWarning when `df.c = df.b + df['a'] * 7`
return df
self.compare_capture_and_eager(operations)
class TestDataFramesPipes(TestCase):
"""
Most of test will fail if pandas instaled, but no dill available.
Need to rework them to avoid multiple skips.
"""
def _get_datapipe(self, range=10, dataframe_size=7):
return NumbersDataset(range) \
.map(lambda i: (i, i % 3))
def _get_dataframes_pipe(self, range=10, dataframe_size=7):
return NumbersDataset(range) \
.map(lambda i: (i, i % 3)) \
._to_dataframes_pipe(
columns=['i', 'j'],
dataframe_size=dataframe_size)
@skipIfNoDataFrames
@skipIfNoDill # TODO(VitalyFedyunin): Decouple tests from dill by avoiding lambdas in map
def test_capture(self):
dp_numbers = self._get_datapipe().map(lambda x: (x[0], x[1], x[1] + 3 * x[0]))
df_numbers = self._get_dataframes_pipe()
df_numbers['k'] = df_numbers['j'] + df_numbers.i * 3
expected = list(dp_numbers)
actual = list(df_numbers)
self.assertEqual(expected, actual)
@skipIfNoDataFrames
@skipIfNoDill
def test_shuffle(self):
# With non-zero (but extremely low) probability (when shuffle do nothing),
# this test fails, so feel free to restart
df_numbers = self._get_dataframes_pipe(range=1000).shuffle()
dp_numbers = self._get_datapipe(range=1000)
df_result = [tuple(item) for item in df_numbers]
self.assertNotEqual(list(dp_numbers), df_result)
self.assertEqual(list(dp_numbers), sorted(df_result))
@skipIfNoDataFrames
@skipIfNoDill
def test_batch(self):
df_numbers = self._get_dataframes_pipe(range=100).batch(8)
df_numbers_list = list(df_numbers)
last_batch = df_numbers_list[-1]
self.assertEqual(4, len(last_batch))
unpacked_batch = [tuple(row) for row in last_batch]
self.assertEqual([(96, 0), (97, 1), (98, 2), (99, 0)], unpacked_batch)
@skipIfNoDataFrames
@skipIfNoDill
def test_unbatch(self):
df_numbers = self._get_dataframes_pipe(range=100).batch(8).batch(3)
dp_numbers = self._get_datapipe(range=100)
self.assertEqual(list(dp_numbers), list(df_numbers.unbatch(2)))
@skipIfNoDataFrames
@skipIfNoDill
def test_filter(self):
df_numbers = self._get_dataframes_pipe(range=10).filter(lambda x: x.i > 5)
actual = list(df_numbers)
self.assertEqual([(6, 0), (7, 1), (8, 2), (9, 0)], actual)
@skipIfNoDataFrames
@skipIfNoDill
def test_collate(self):
def collate_i(column):
return column.sum()
def collate_j(column):
return column.prod()
df_numbers = self._get_dataframes_pipe(range=30).batch(3)
df_numbers = df_numbers.collate({'j': collate_j, 'i': collate_i})
expected_i = [3,
12,
21,
30,
39,
48,
57,
66,
75,
84, ]
actual_i = []
for i, j in df_numbers:
actual_i.append(i)
self.assertEqual(expected_i, actual_i)
actual_i = []
for item in df_numbers:
actual_i.append(item.i)
self.assertEqual(expected_i, actual_i)
class IDP_NoLen(IterDataPipe):
def __init__(self, input_dp):
super().__init__()
self.input_dp = input_dp
# Prevent in-place modification
def __iter__(self):
input_dp = self.input_dp if isinstance(self.input_dp, IterDataPipe) else copy.deepcopy(self.input_dp)
for i in input_dp:
yield i
def _fake_fn(data):
return data
def _fake_add(constant, data):
return constant + data
def _fake_filter_fn(data):
return True
def _simple_filter_fn(data):
return data >= 5
def _fake_filter_fn_constant(constant, data):
return data >= constant
def _mul_10(x):
return x * 10
def _mod_3_test(x):
return x % 3 == 1
lambda_fn1 = lambda x: x # noqa: E731
lambda_fn2 = lambda x: x % 2 # noqa: E731
lambda_fn3 = lambda x: x >= 5 # noqa: E731
class TestFunctionalIterDataPipe(TestCase):
def _serialization_test_helper(self, datapipe, use_dill):
if use_dill:
serialized_dp = dill.dumps(datapipe)
deserialized_dp = dill.loads(serialized_dp)
else:
serialized_dp = pickle.dumps(datapipe)
deserialized_dp = pickle.loads(serialized_dp)
try:
self.assertEqual(list(datapipe), list(deserialized_dp))
except AssertionError as e:
print(f"{datapipe} is failing.")
raise e
def _serialization_test_for_single_dp(self, dp, use_dill=False):
# 1. Testing for serialization before any iteration starts
self._serialization_test_helper(dp, use_dill)
# 2. Testing for serialization after DataPipe is partially read
it = iter(dp)
_ = next(it)
self._serialization_test_helper(dp, use_dill)
# 3. Testing for serialization after DataPipe is fully read
it = iter(dp)
_ = list(it)
self._serialization_test_helper(dp, use_dill)
def _serialization_test_for_dp_with_children(self, dp1, dp2, use_dill=False):
# 1. Testing for serialization before any iteration starts
self._serialization_test_helper(dp1, use_dill)
self._serialization_test_helper(dp2, use_dill)
# 2. Testing for serialization after DataPipe is partially read
it1, it2 = iter(dp1), iter(dp2)
_, _ = next(it1), next(it2)
# Catch `fork`, `demux` "some child DataPipes are not exhausted" warning
with warnings.catch_warnings(record=True) as wa:
self._serialization_test_helper(dp1, use_dill)
self._serialization_test_helper(dp2, use_dill)
# 2.5. Testing for serialization after one child DataPipe is fully read
# (Only for DataPipes with children DataPipes)
it1 = iter(dp1)
_ = list(it1) # fully read one child
# Catch `fork`, `demux` "some child DataPipes are not exhausted" warning
with warnings.catch_warnings(record=True) as wa:
self._serialization_test_helper(dp1, use_dill)
self._serialization_test_helper(dp2, use_dill)
# 3. Testing for serialization after DataPipe is fully read
it2 = iter(dp2)
_ = list(it2) # fully read the other child
self._serialization_test_helper(dp1, use_dill)
self._serialization_test_helper(dp2, use_dill)
def test_serializable(self):
picklable_datapipes: List = [
(dp.iter.Batcher, None, (3, True,), {}),
(dp.iter.Collator, None, (_fake_fn,), {}),
(dp.iter.Concater, None, (dp.iter.IterableWrapper(range(5)),), {}),
(dp.iter.Demultiplexer, None, (2, _simple_filter_fn), {}),
(dp.iter.FileLister, ".", (), {}),
(dp.iter.FileOpener, None, (), {}),
(dp.iter.Filter, None, (_fake_filter_fn,), {}),
(dp.iter.Filter, None, (partial(_fake_filter_fn_constant, 5),), {}),
(dp.iter.Forker, None, (2,), {}),
(dp.iter.Grouper, None, (_fake_filter_fn,), {"group_size": 2}),
(dp.iter.IterableWrapper, range(10), (), {}),
(dp.iter.Mapper, None, (_fake_fn,), {}),
(dp.iter.Mapper, None, (partial(_fake_add, 1),), {}),
(dp.iter.Multiplexer, None, (dp.iter.IterableWrapper(range(10)),), {}),
(dp.iter.Sampler, None, (), {}),
(dp.iter.Shuffler, dp.iter.IterableWrapper([0] * 10), (), {}),
(dp.iter.StreamReader, None, (), {}),
(dp.iter.UnBatcher, None, (0,), {}),
(dp.iter.Zipper, None, (dp.iter.IterableWrapper(range(10)),), {}),
]
# Skipping comparison for these DataPipes
dp_skip_comparison = {dp.iter.FileOpener, dp.iter.StreamReader}
# These DataPipes produce multiple DataPipes as outputs and those should be compared
dp_compare_children = {dp.iter.Demultiplexer, dp.iter.Forker}
for dpipe, custom_input, dp_args, dp_kwargs in picklable_datapipes:
if custom_input is None:
custom_input = dp.iter.IterableWrapper(range(10))
if dpipe in dp_skip_comparison: # Merely make sure they are picklable and loadable (no value comparison)
datapipe = dpipe(custom_input, *dp_args, **dp_kwargs) # type: ignore[call-arg]
serialized_dp = pickle.dumps(datapipe)
_ = pickle.loads(serialized_dp)
elif dpipe in dp_compare_children: # DataPipes that have children
dp1, dp2 = dpipe(custom_input, *dp_args, **dp_kwargs) # type: ignore[call-arg]
self._serialization_test_for_dp_with_children(dp1, dp2)
else: # Single DataPipe that requires comparison
datapipe = dpipe(custom_input, *dp_args, **dp_kwargs) # type: ignore[call-arg]
self._serialization_test_for_single_dp(datapipe)
def test_serializable_with_dill(self):
"""Only for DataPipes that take in a function as argument"""
input_dp = dp.iter.IterableWrapper(range(10))
datapipes_with_lambda_fn: List[Tuple[Type[IterDataPipe], Tuple, Dict[str, Any]]] = [
(dp.iter.Collator, (lambda_fn1,), {}),
(dp.iter.Demultiplexer, (2, lambda_fn2,), {}),
(dp.iter.Filter, (lambda_fn3,), {}),
(dp.iter.Grouper, (lambda_fn3,), {}),
(dp.iter.Mapper, (lambda_fn1,), {}),
]
def _local_fns():
def _fn1(x):
return x
def _fn2(x):
return x % 2
def _fn3(x):
return x >= 5
return _fn1, _fn2, _fn3
fn1, fn2, fn3 = _local_fns()
datapipes_with_local_fn: List[Tuple[Type[IterDataPipe], Tuple, Dict[str, Any]]] = [
(dp.iter.Collator, (fn1,), {}),
(dp.iter.Demultiplexer, (2, fn2,), {}),
(dp.iter.Filter, (fn3,), {}),
(dp.iter.Grouper, (fn3,), {}),
(dp.iter.Mapper, (fn1,), {}),
]
dp_compare_children = {dp.iter.Demultiplexer}
if HAS_DILL:
for dpipe, dp_args, dp_kwargs in datapipes_with_lambda_fn + datapipes_with_local_fn:
if dpipe in dp_compare_children:
dp1, dp2 = dpipe(input_dp, *dp_args, **dp_kwargs) # type: ignore[call-arg]
self._serialization_test_for_dp_with_children(dp1, dp2, use_dill=True)
else:
datapipe = dpipe(input_dp, *dp_args, **dp_kwargs) # type: ignore[call-arg]
self._serialization_test_for_single_dp(datapipe, use_dill=True)
else:
msgs = (
r"^Lambda function is not supported by pickle",
r"^Local function is not supported by pickle"
)
for dps, msg in zip((datapipes_with_lambda_fn, datapipes_with_local_fn), msgs):
for dpipe, dp_args, dp_kwargs in dps:
with self.assertWarnsRegex(UserWarning, msg):
datapipe = dpipe(input_dp, *dp_args, **dp_kwargs) # type: ignore[call-arg]
with self.assertRaises((pickle.PicklingError, AttributeError)):
pickle.dumps(datapipe)
def test_iterable_wrapper_datapipe(self):
input_ls = list(range(10))
input_dp = dp.iter.IterableWrapper(input_ls)
# Functional Test: values are unchanged and in the same order
self.assertEqual(input_ls, list(input_dp))
# Functional Test: deep copy by default when an iterator is initialized (first element is read)
it = iter(input_dp)
self.assertEqual(0, next(it)) # The deep copy only happens when the first element is read
input_ls.append(50)
self.assertEqual(list(range(1, 10)), list(it))
# Functional Test: shallow copy
input_ls2 = [1, 2, 3]
input_dp_shallow = dp.iter.IterableWrapper(input_ls2, deepcopy=False)
input_ls2.append(10)
self.assertEqual([1, 2, 3, 10], list(input_dp_shallow))
# Reset Test: reset the DataPipe
input_ls = list(range(10))
input_dp = dp.iter.IterableWrapper(input_ls)
n_elements_before_reset = 5
res_before_reset, res_after_reset = reset_after_n_next_calls(input_dp, n_elements_before_reset)
self.assertEqual(input_ls[:n_elements_before_reset], res_before_reset)
self.assertEqual(input_ls, res_after_reset)
# __len__ Test: inherits length from sequence
self.assertEqual(len(input_ls), len(input_dp))
def test_concat_iterdatapipe(self):
input_dp1 = dp.iter.IterableWrapper(range(10))
input_dp2 = dp.iter.IterableWrapper(range(5))
# Functional Test: Raises exception for empty input
with self.assertRaisesRegex(ValueError, r"Expected at least one DataPipe"):
dp.iter.Concater()
# Functional Test: Raises exception for non-IterDataPipe input
with self.assertRaisesRegex(TypeError, r"Expected all inputs to be `IterDataPipe`"):
dp.iter.Concater(input_dp1, ()) # type: ignore[arg-type]
# Functional Test: Concatenate DataPipes as expected
concat_dp = input_dp1.concat(input_dp2)
self.assertEqual(len(concat_dp), 15)
self.assertEqual(list(concat_dp), list(range(10)) + list(range(5)))
# Reset Test: reset the DataPipe
n_elements_before_reset = 5
res_before_reset, res_after_reset = reset_after_n_next_calls(concat_dp, n_elements_before_reset)
self.assertEqual(list(range(5)), res_before_reset)
self.assertEqual(list(range(10)) + list(range(5)), res_after_reset)
# __len__ Test: inherits length from source DataPipe
input_dp_nl = IDP_NoLen(range(5))
concat_dp = input_dp1.concat(input_dp_nl)
with self.assertRaisesRegex(TypeError, r"instance doesn't have valid length$"):
len(concat_dp)
self.assertEqual(list(concat_dp), list(range(10)) + list(range(5)))
def test_fork_iterdatapipe(self):
input_dp = dp.iter.IterableWrapper(range(10))
with self.assertRaises(ValueError):
input_dp.fork(num_instances=0)
dp0 = input_dp.fork(num_instances=1, buffer_size=0)
self.assertEqual(dp0, input_dp)
# Functional Test: making sure all child DataPipe shares the same reference
dp1, dp2, dp3 = input_dp.fork(num_instances=3)
self.assertTrue(all(n1 is n2 and n1 is n3 for n1, n2, n3 in zip(dp1, dp2, dp3)))
# Functional Test: one child DataPipe yields all value at a time
output1, output2, output3 = list(dp1), list(dp2), list(dp3)
self.assertEqual(list(range(10)), output1)
self.assertEqual(list(range(10)), output2)
self.assertEqual(list(range(10)), output3)
# Functional Test: two child DataPipes yield value together
dp1, dp2 = input_dp.fork(num_instances=2)
output = []
for n1, n2 in zip(dp1, dp2):
output.append((n1, n2))
self.assertEqual([(i, i) for i in range(10)], output)
# Functional Test: one child DataPipe yields all value first, but buffer_size = 5 being too small
dp1, dp2 = input_dp.fork(num_instances=2, buffer_size=4)
it1 = iter(dp1)
for _ in range(4):
next(it1)
with self.assertRaises(BufferError):
next(it1)
with self.assertRaises(BufferError):
list(dp2)
dp1, dp2 = input_dp.fork(num_instances=2, buffer_size=5)
with self.assertRaises(BufferError):
list(dp2)
# Functional Test: one child DataPipe yields all value first with unlimited buffer
with warnings.catch_warnings(record=True) as wa:
dp1, dp2 = input_dp.fork(num_instances=2, buffer_size=-1)
self.assertEqual(len(wa), 1)
self.assertRegex(str(wa[0].message), r"Unlimited buffer size is set")
l1, l2 = list(dp1), list(dp2)
for d1, d2 in zip(l1, l2):
self.assertEqual(d1, d2)
# Functional Test: two child DataPipes yield value together with buffer size 1
dp1, dp2 = input_dp.fork(num_instances=2, buffer_size=1)
output = []
for n1, n2 in zip(dp1, dp2):
output.append((n1, n2))
self.assertEqual([(i, i) for i in range(10)], output)
# Functional Test: make sure logic related to slowest_ptr is working properly
dp1, dp2, dp3 = input_dp.fork(num_instances=3)
output1, output2, output3 = [], [], []
for i, (n1, n2) in enumerate(zip(dp1, dp2)):
output1.append(n1)
output2.append(n2)
if i == 4: # yield all of dp3 when halfway through dp1, dp2
output3 = list(dp3)
break
self.assertEqual(list(range(5)), output1)
self.assertEqual(list(range(5)), output2)
self.assertEqual(list(range(10)), output3)
# Reset Test: DataPipe resets when a new iterator is created, even if this datapipe hasn't been read
dp1, dp2 = input_dp.fork(num_instances=2)
_ = iter(dp1)
output2 = []
with self.assertRaisesRegex(RuntimeError, r"iterator has been invalidated"):
for i, n2 in enumerate(dp2):
output2.append(n2)
if i == 4:
with warnings.catch_warnings(record=True) as wa:
_ = iter(dp1) # This will reset all child DataPipes
self.assertEqual(len(wa), 1)
self.assertRegex(str(wa[0].message), r"child DataPipes are not exhausted")
self.assertEqual(list(range(5)), output2)
# Reset Test: DataPipe resets when some of it has been read
dp1, dp2 = input_dp.fork(num_instances=2)
output1, output2 = [], []
for i, (n1, n2) in enumerate(zip(dp1, dp2)):
output1.append(n1)
output2.append(n2)
if i == 4:
with warnings.catch_warnings(record=True) as wa:
_ = iter(dp1) # Reset both all child DataPipe
self.assertEqual(len(wa), 1)
self.assertRegex(str(wa[0].message), r"Some child DataPipes are not exhausted")
break
with warnings.catch_warnings(record=True) as wa:
for i, (n1, n2) in enumerate(zip(dp1, dp2)):
output1.append(n1)
output2.append(n2)
self.assertEqual(len(wa), 1)
self.assertRegex(str(wa[0].message), r"child DataPipes are not exhausted")
self.assertEqual(list(range(5)) + list(range(10)), output1)
self.assertEqual(list(range(5)) + list(range(10)), output2)
# Reset Test: DataPipe reset, even when some other child DataPipes are not read
dp1, dp2, dp3 = input_dp.fork(num_instances=3)
output1, output2 = list(dp1), list(dp2)
self.assertEqual(list(range(10)), output1)
self.assertEqual(list(range(10)), output2)
with warnings.catch_warnings(record=True) as wa:
self.assertEqual(list(range(10)), list(dp1)) # Resets even though dp3 has not been read
self.assertEqual(len(wa), 1)
self.assertRegex(str(wa[0].message), r"Some child DataPipes are not exhausted")
output3 = []
for i, n3 in enumerate(dp3):
output3.append(n3)
if i == 4:
with warnings.catch_warnings(record=True) as wa:
output1 = list(dp1) # Resets even though dp3 is only partially read
self.assertEqual(len(wa), 1)
self.assertRegex(str(wa[0].message), r"Some child DataPipes are not exhausted")
self.assertEqual(list(range(5)), output3)
self.assertEqual(list(range(10)), output1)
break
self.assertEqual(list(range(10)), list(dp3)) # dp3 has to read from the start again
# __len__ Test: Each DataPipe inherits the source datapipe's length
dp1, dp2, dp3 = input_dp.fork(num_instances=3)
self.assertEqual(len(input_dp), len(dp1))
self.assertEqual(len(input_dp), len(dp2))
self.assertEqual(len(input_dp), len(dp3))
# Pickle Test:
dp1, dp2, dp3 = input_dp.fork(num_instances=3)
traverse_dps(dp1) # This should not raise any error
for _ in zip(dp1, dp2, dp3):
pass
traverse_dps(dp2) # This should not raise any error either
def test_mux_iterdatapipe(self):
# Functional Test: Elements are yielded one at a time from each DataPipe, until they are all exhausted
input_dp1 = dp.iter.IterableWrapper(range(4))
input_dp2 = dp.iter.IterableWrapper(range(4, 8))
input_dp3 = dp.iter.IterableWrapper(range(8, 12))