forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanomaly_mode.cpp
79 lines (67 loc) · 2.25 KB
/
anomaly_mode.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#include <c10/util/Backtrace.h>
#include <c10/util/Exception.h>
#include <torch/csrc/autograd/anomaly_mode.h>
#include <torch/csrc/autograd/function.h>
#include <mutex>
namespace torch {
namespace autograd {
bool AnomalyMode::_enabled = false;
bool AnomalyMode::_check_nan = true;
namespace {
std::mutex& get_anomaly_guard_lock() {
static std::mutex anomaly_guard_lock{};
return anomaly_guard_lock;
}
uint32_t& get_anomaly_counter() {
static uint32_t counter = 0;
return counter;
}
} // namespace
DetectAnomalyGuard::DetectAnomalyGuard(bool check_nan) {
TORCH_WARN_ONCE(
"This mode should be enabled only for debugging as the different tests will slow down your program execution.");
std::lock_guard<std::mutex> lock(get_anomaly_guard_lock());
uint32_t& counter = get_anomaly_counter();
counter++;
this->prev_check_nan_ = AnomalyMode::should_check_nan();
AnomalyMode::set_enabled(true, check_nan);
}
DetectAnomalyGuard::~DetectAnomalyGuard() {
std::lock_guard<std::mutex> lock(get_anomaly_guard_lock());
uint32_t& counter = get_anomaly_counter();
counter--;
AnomalyMode::set_enabled(counter > 0, this->prev_check_nan_);
}
AnomalyMetadata::~AnomalyMetadata() = default;
void AnomalyMetadata::store_stack() {
traceback_ = c10::get_backtrace(/* frames_to_skip */ 1);
}
void AnomalyMetadata::print_stack(const std::string& current_node_name) {
TORCH_WARN(
"Error detected in ",
current_node_name,
". ",
"Traceback of forward call that caused the error:\n",
traceback_);
auto& cur_parent = parent_;
// if there is no "parent_" in metadata, then it means this metadata's node
// is the root and stop printing the traceback
while (cur_parent) {
auto parent_metadata = cur_parent->metadata();
TORCH_WARN(
"\n\n",
"Previous calculation was induced by ",
cur_parent->name(),
". "
"Traceback of forward call that induced the previous calculation:\n",
parent_metadata->traceback_);
// get the parent of this node, if this node is a root, pyparent is simply
// null
cur_parent = parent_metadata->parent_;
}
}
void AnomalyMetadata::assign_parent(const std::shared_ptr<Node>& parent_node) {
parent_ = parent_node;
}
} // namespace autograd
} // namespace torch