forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpython_arg_flatten.cpp
195 lines (178 loc) · 6.69 KB
/
python_arg_flatten.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#include <c10/util/irange.h>
#include <torch/csrc/jit/python/python_arg_flatten.h>
#include <torch/csrc/utils/python_strings.h>
#include <torch/csrc/utils/six.h>
#include <torch/csrc/autograd/grad_mode.h>
namespace torch::jit::python {
using namespace torch::autograd;
using namespace at;
// Alphabet used to describe structure of inputs/outputs (D for desc)
namespace D {
static constexpr char DictOpen = '<';
static constexpr char DictClose = '>';
static constexpr char ListOpen = '[';
static constexpr char ListClose = ']';
static constexpr char TupleOpen = '(';
static constexpr char TupleClose = ')';
static constexpr char Variable = 'v';
static constexpr char Bool = 'b';
static constexpr char Long = 'l';
static constexpr char Double = 'd';
static constexpr char String = 's';
static constexpr char NoneType = 'n';
} // namespace D
namespace {
inline bool PyNone_Check(PyObject* o) {
return o == Py_None;
}
template <typename T>
py::object cast_handle_sequence(std::vector<py::handle> objs) {
auto num_objs = objs.size();
T sequence{num_objs};
for (const auto i : c10::irange(num_objs)) {
sequence[i] = py::reinterpret_borrow<py::object>(objs[i]);
}
return sequence;
}
void flatten_rec(PyObject* obj, ParsedArgs& args) {
auto& structure = args.desc.structure;
if (six::isTuple(obj)) {
structure.push_back(D::TupleOpen);
for (auto item : py::reinterpret_borrow<py::tuple>(obj))
flatten_rec(item.ptr(), args);
structure.push_back(D::TupleClose);
} else if (PyList_Check(obj)) {
structure.push_back(D::ListOpen);
for (auto item : py::reinterpret_borrow<py::list>(obj))
flatten_rec(item.ptr(), args);
structure.push_back(D::ListClose);
} else if (PyDict_Check(obj)) {
auto dict_items = PyDict_Items(obj);
structure.push_back(D::DictOpen);
for (auto item : py::reinterpret_borrow<py::list>(dict_items)) {
flatten_rec(item.ptr(), args);
}
structure.push_back(D::DictClose);
} else if (THPUtils_checkString(obj)) {
string str = THPUtils_unpackString(obj);
args.desc.strings.emplace_back(str);
args.desc.structure.push_back(D::String);
} else if (THPVariable_Check(obj)) {
auto& var = THPVariable_Unpack(obj);
args.vars.push_back(var);
args.desc.metadata.emplace_back(var);
args.desc.structure.push_back(D::Variable);
} else if (PyNone_Check(obj)) {
args.desc.structure.push_back(D::NoneType);
} else if (PyBool_Check(obj)) { // Wrap bools in Bool tensors
at::Tensor var = scalar_to_tensor(at::Scalar(THPUtils_unpackBool(obj)));
args.vars.push_back(var);
args.desc.metadata.emplace_back(var);
args.desc.structure.push_back(D::Bool);
} else if (PyLong_Check(obj)) { // Wrap longs in Long tensors
at::Tensor var = scalar_to_tensor(
at::Scalar(static_cast<int64_t>(THPUtils_unpackLong(obj))));
args.vars.push_back(var);
args.desc.metadata.emplace_back(var);
args.desc.structure.push_back(D::Long);
} else if (PyFloat_Check(obj)) { // Wrap floats in Double tensors
at::Tensor var = scalar_to_tensor(THPUtils_unpackDouble(obj));
args.vars.push_back(var);
args.desc.metadata.emplace_back(var);
args.desc.structure.push_back(D::Double);
} else {
std::string msg =
"Only tuples, lists and Variables are supported as JIT inputs/outputs. "
"Dictionaries and strings are also accepted, but their usage is not "
"recommended. Here, received an input of unsupported type: ";
msg += THPUtils_typename(obj);
throw std::runtime_error(msg);
}
}
} // anonymous namespace
ParsedArgs flatten(py::handle obj) {
ParsedArgs args;
args.desc.grad_enabled = autograd::GradMode::is_enabled();
flatten_rec(obj.ptr(), args);
return args;
}
namespace {
template <typename T>
py::object cast_sequence(std::vector<py::object> objs) {
auto num_objs = objs.size();
T sequence{num_objs};
for (const auto i : c10::irange(num_objs)) {
sequence[i] = std::move(objs[i]);
}
return std::move(sequence);
}
py::object cast_dict(std::vector<py::object> objs) {
auto num_objs = objs.size();
py::dict sequence = {};
for (const auto i : c10::irange(num_objs)) {
py::tuple obj = py::reinterpret_borrow<py::tuple>(objs[i]);
sequence[obj[0]] = obj[1];
}
return std::move(sequence);
}
py::object unflatten_rec(
ArrayRef<Variable>::iterator& var_it,
ArrayRef<Variable>::iterator& var_it_end,
std::string::const_iterator& desc_it,
std::vector<string>::const_iterator& str_it,
std::vector<string>::const_iterator& str_it_end) {
char type = *desc_it++;
if (type == D::TupleOpen) {
std::vector<py::object> objs;
while (*desc_it != D::TupleClose)
objs.push_back(
unflatten_rec(var_it, var_it_end, desc_it, str_it, str_it_end));
++desc_it;
return cast_sequence<py::tuple>(objs);
} else if (type == D::ListOpen) {
std::vector<py::object> objs;
while (*desc_it != D::ListClose)
objs.push_back(
unflatten_rec(var_it, var_it_end, desc_it, str_it, str_it_end));
++desc_it;
return cast_sequence<py::list>(objs);
} else if (type == D::DictOpen) {
std::vector<py::object> objs;
while (*desc_it != D::DictClose) {
objs.push_back(
unflatten_rec(var_it, var_it_end, desc_it, str_it, str_it_end));
}
++desc_it;
return cast_dict(objs);
} else if (type == D::String) {
if (str_it == str_it_end)
throw std::runtime_error("Not enough Variables given to unflatten");
auto str = *str_it++;
return py::reinterpret_borrow<py::object>(THPUtils_packString(str));
} else if (type == D::NoneType) {
return py::reinterpret_borrow<py::object>(py::none());
} else {
// if (type == D::Long || type == D::Double || type == D::Bool ||
// D::Variable) unwrap variables (D::Variable), or unwrap primitive types
// (Long, Double, Bool) as variables for tracer.
if (var_it == var_it_end)
throw std::runtime_error("Not enough Variables given to unflatten");
auto var = *var_it++;
return py::reinterpret_steal<py::object>(THPVariable_Wrap(var));
}
}
} // anonymous namespace
PyObject* unflatten(ArrayRef<Variable> vars, const IODescriptor& desc) {
// NB: We don't do correctness checking on descriptor.
// It has to be a correct bytes object produced by unflatten.
auto vars_it = vars.begin();
auto vars_it_end = vars.end();
auto desc_it = desc.structure.begin();
std::vector<std::string>::const_iterator str_it = desc.strings.begin();
std::vector<std::string>::const_iterator str_end = desc.strings.end();
auto output = unflatten_rec(vars_it, vars_it_end, desc_it, str_it, str_end);
if (vars_it != vars_it_end)
throw std::runtime_error("Too many Variables given to unflatten");
return output.release().ptr();
}
} // namespace torch::jit::python