forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
export_module.cpp
978 lines (898 loc) · 35.1 KB
/
export_module.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
#include <torch/csrc/jit/serialization/export.h>
#include <c10/util/Exception.h>
#include <torch/csrc/jit/api/function_impl.h>
#include <torch/csrc/jit/backends/backend_debug_handler.h>
#include <torch/csrc/jit/backends/backend_debug_info.h>
#include <torch/csrc/jit/frontend/source_range.h>
#include <torch/csrc/jit/ir/attributes.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/ir/type_hashing.h>
#include <torch/csrc/jit/mobile/function.h>
#include <torch/csrc/jit/mobile/interpreter.h>
#include <torch/csrc/jit/mobile/method.h>
#include <torch/csrc/jit/mobile/module.h>
#include <torch/csrc/jit/passes/inliner.h>
#include <torch/csrc/jit/runtime/instruction.h>
#include <torch/csrc/jit/serialization/callstack_debug_info_serialization.h>
#include <torch/csrc/jit/serialization/export_bytecode.h>
#include <torch/csrc/jit/serialization/flatbuffer_serializer.h>
#include <torch/csrc/jit/serialization/import_export_constants.h>
#include <torch/csrc/jit/serialization/import_export_functions.h>
#include <torch/csrc/jit/serialization/import_export_helpers.h>
#include <torch/csrc/jit/serialization/pickle.h>
#include <torch/csrc/jit/serialization/python_print.h>
#include <torch/csrc/jit/serialization/source_range_serialization.h>
#include <torch/csrc/jit/serialization/type_name_uniquer.h>
#include <caffe2/serialize/inline_container.h>
#include <ATen/ATen.h>
#include <ATen/core/jit_type.h>
#include <ATen/core/qualified_name.h>
#include <cerrno>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
namespace torch::jit {
CompilationOptions getOptionsFromGlobal() {
CompilationOptions compilation_options;
compilation_options.enable_default_args_before_out_args =
BytecodeEmitMode::is_default_args_before_out_args_enabled();
compilation_options.enable_default_value_for_unspecified_arg =
BytecodeEmitMode::is_default_value_for_unspecified_arg_enabled();
compilation_options.enable_emit_promoted_ops =
BytecodeEmitMode::is_emit_promoted_ops_enabled();
compilation_options.incl_interface_call = getMobileInterfaceCallExport();
compilation_options.model_version =
caffe2::serialize::kProducedBytecodeVersion;
return compilation_options;
}
IValue to_tuple(std::initializer_list<IValue> ivalues) {
return c10::ivalue::Tuple::create(ivalues);
}
IValue to_tuple(std::vector<IValue> ivalues) {
return c10::ivalue::Tuple::create(std::move(ivalues));
}
IValue Table(const std::vector<std::pair<std::string, IValue>>& entries) {
std::vector<IValue> ivalue_entries;
ivalue_entries.reserve(entries.size());
for (const auto& e : entries) {
ivalue_entries.push_back(to_tuple({e.first, e.second}));
}
return to_tuple(std::move(ivalue_entries));
}
namespace {
ExportModuleExtraFilesHook& GetExtraFilesHook() {
static ExportModuleExtraFilesHook func = nullptr;
return func;
}
/**
* If the type is not NamedTuple, it will return default_type_str. If the type
* is a NamedTuple, it will return a string with following structure to describe
* the content in the NamedTuple: "qualified_named[ NamedTuple, [ [filed_name_1,
* field_type_1], [filed_name_2, field_type_2]
* ]
* ]"
* Example NamedTuple type:
* "__torch__.base_models.sparse_nn.pytorch_preproc_types.PreprocOutputType[
* NamedTuple, [
* [float_features, Tensor],
* [id_list_features, List[Tensor]],
* [label, Tensor],
* [weight, Tensor],
* ]
* ]"
*
* @param compilation_unit Jit compilation unit to look up function schema.
* @param type_ptr A type pointer and it can be possibly any type.
* @param default_type_str The default string representation. The string can
* either from type_ptr->str(), type_ptr->annotation_str(), or
* type_ptr->repr_str(). In some cases, they could be different in different
* scenario. For example, Tensor type can be "Tensor", "Tensor (inferred)" and
* "Tensor[]", and we only want "Tensor". Leave it as part of arguments as the
* default return, when type_ptr is not a NamedTuple.
* @return string representation.
*/
std::string get_named_tuple_str_or_default(
const CompilationUnit& compilation_unit,
const TypePtr& type_ptr,
std::string default_type_str) {
if (type_ptr->kind() == TypeKind::TupleType) {
// For the simple types (Tensor, Tensor), the mobile type parse can parse
// it and compilation unit won't have it's definition. The default type
// string will be returned instead.
if (compilation_unit.get_named_tuple(type_ptr->str())) {
auto named_tuple_ptr = compilation_unit.get_named_tuple(type_ptr->str());
if (named_tuple_ptr != nullptr) {
std::string named_tuple_str = type_ptr->str();
named_tuple_str.append("[NamedTuple, [");
std::vector<IValue> name_type_pairs;
// Get the field name and field type for the NamedTuple
for (auto it = named_tuple_ptr->schema()->arguments().begin();
it != named_tuple_ptr->schema()->arguments().end();
it++) {
const std::string named_tuple_name = it->name();
const c10::TypePtr& named_tuple_type = it->type();
// When it->type() is Tensor type, in Python, if it's inferred type,
// str() return "Tensor" and repr_str() return "Tensor (inferred)". If
// it's not inferred type, str() return "Tensor[]" and repr_str()
// return "Tensor". In cpp, repr_str() will always return "Tensor"
// regardless inferred type. When exporing custom type in bytecode,
// "Tensor" is the preferred way to deserialize Tensor type
std::string named_tuple_type_str = it->is_inferred_type()
? named_tuple_type->str()
: named_tuple_type->repr_str();
// The type can also be NamedTuple. Will parse it recursively and get
// it's string representation.
named_tuple_type_str = get_named_tuple_str_or_default(
compilation_unit, named_tuple_type, named_tuple_type_str);
name_type_pairs.emplace_back(
c10::ivalue::Tuple::create({it->name(), named_tuple_type_str}));
named_tuple_str.append("[")
.append(named_tuple_name)
.append(", ")
.append(named_tuple_type_str)
.append("]");
if (it != named_tuple_ptr->schema()->arguments().end() - 1) {
named_tuple_str.append(",");
}
}
named_tuple_str.append("]]");
return named_tuple_str;
}
}
}
return default_type_str;
}
std::pair<IValue, IValue> getFunctionTuple(
const CompilationUnit& compilation_unit,
const mobile::Function& func,
BackendDebugInfoRecorder& debug_info_recorder,
TypeNameUniquer& type_name_uniquer_) {
const auto& mobile_code = func.get_code();
// instructions
std::vector<IValue> instructions;
instructions.reserve(mobile_code.instructions_.size());
for (Instruction ins : mobile_code.instructions_) {
instructions.emplace_back(to_tuple({toString(ins.op), ins.X, ins.N}));
}
// operators
std::vector<IValue> operators;
operators.reserve(mobile_code.op_names_.size());
for (int i = 0; i < mobile_code.op_names_.size(); ++i) {
const auto& opname = mobile_code.op_names_[i];
const int size = mobile_code.operator_input_sizes_[i];
if (BytecodeEmitMode::is_default_value_for_unspecified_arg_enabled()) {
operators.emplace_back(to_tuple({opname.name, opname.overload_name}));
} else {
operators.emplace_back(
to_tuple({opname.name, opname.overload_name, size}));
}
}
// types
std::vector<IValue> types;
types.reserve(mobile_code.types_.size());
static const std::string torch_prefix("__torch__");
static const std::string class_prefix("__torch__.torch.classes");
for (const TypePtr& ty : mobile_code.types_) {
auto t = ty;
if (auto dyn = t->castRaw<c10::DynamicType>()) {
t = dyn->fallback();
}
std::string type_str = t->annotation_str();
if (t->kind() == TypeKind::DictType) {
// For DictType, there are two items in t->containedTypes(), the first one
// is key and the second one is value. Both of them could be NamedTuple
// type.
const TypePtr& key_type = t->containedTypes()[0];
const TypePtr& value_type = t->containedTypes()[1];
std::string key_type_str = get_named_tuple_str_or_default(
compilation_unit, key_type, key_type->annotation_str());
std::string value_type_str = get_named_tuple_str_or_default(
compilation_unit, value_type, value_type->annotation_str());
// Construct the dict representation after achieving correct string
// representation for both key and value, like
// "Dict[str,__torch__.dper3.core.pytorch_schema_utils.IdScoreListFeatureTuple[NamedTuple,
// [[lengths, Tensor],[values,
// __torch__.dper3.core.pytorch_schema_utils.IdScoreTuple[NamedTuple,
// [[ids, Tensor],[scores, Tensor]]]],[offsets, Optional[Tensor]]]]]"
std::string dict_str;
dict_str.append("Dict[")
.append(key_type_str)
.append(",")
.append(value_type_str)
.append("]");
types.emplace_back(dict_str);
continue;
} else if (t->kind() == TypeKind::TupleType) {
std::string named_tuple_str =
get_named_tuple_str_or_default(compilation_unit, t, type_str);
types.emplace_back(named_tuple_str);
continue;
} else if (type_str.find(torch_prefix) == 0) {
TORCH_CHECK(
type_str.find(class_prefix) == 0,
"__torch__ types other than custom c++ classes (__torch__.torch.classes)"
"are not supported in lite interpreter. ",
"Workaround: instead of using arbitrary class type (class Foo()), ",
"define a pytorch class (class Foo(torch.nn.Module)). The problematic type is: ",
type_str);
}
types.emplace_back(type_str);
}
// since the register location is embedded into the bytecode, pass the
// register size
auto register_size = static_cast<int>(mobile_code.register_size_);
auto codeTable = Table(
{{"instructions", to_tuple(instructions)},
{"operators", to_tuple(operators)},
{"constants", to_tuple(mobile_code.constants_)},
{"types", to_tuple(types)},
{"register_size", register_size}});
// schema
const auto& schema = func.getSchema();
auto type_printer = [&](const c10::Type& t) -> c10::optional<std::string> {
auto namedType = t.cast<c10::NamedType>();
if (namedType && namedType->name()) {
return type_name_uniquer_.getUniqueName(namedType).qualifiedName();
}
return c10::nullopt;
};
auto makeArgTuple = [&](const std::vector<Argument>& args) {
std::vector<IValue> argTables;
for (auto&& arg : args) {
TORCH_CHECK(
!arg.N(),
"Arguments with known list lengths are not supported in mobile modules.");
TORCH_CHECK(
!arg.kwarg_only(),
"Keyword-only arguments are not supported in mobile modules.");
/*
This part adds the argument's name, type and default_value in
`bytecode.pkl` This has to be consistent with the `code/` directory
which has annotated py code of the entire module. `type_printer` uses
`TypeNameUniquer` to get the managled name of the argument. This helps
in having the right object reference when a class method is called using
the `self` argument.
arg.type()->annotation_str(type_printer) => mangled unique name of the
module/submodule
*/
auto arg_type = arg.type();
if (auto dyn = arg_type->castRaw<c10::DynamicType>()) {
arg_type = dyn->fallback();
}
argTables.emplace_back(Table({
{"name", arg.name()},
{"type", arg_type->annotation_str(type_printer)},
{"default_value", arg.default_value()},
}));
}
return to_tuple(argTables);
};
auto schemaTable = Table({
{"arguments", makeArgTuple(schema.arguments())},
{"returns", makeArgTuple(schema.returns())},
});
// function tuple
std::string qn;
if (func.name() == "__setstate__" || func.name() == "__getstate__") {
auto classtype = func.getSchema().arguments()[0].type()->cast<ClassType>();
TORCH_INTERNAL_ASSERT(
classtype, "class is null ", func.qualname().qualifiedName());
qn = c10::QualifiedName(
type_name_uniquer_.getUniqueName(classtype), func.name())
.qualifiedName();
} else {
qn = func.qualname().qualifiedName();
}
auto bytecode_vals = to_tuple({qn, codeTable, schemaTable});
c10::optional<IValue> debug_info_vals;
// module debug info
// This is just a set of debug handles.
// We always save debug handles.
// debug handles generated by debug_handle_manager
// will correspond to {source_range, inlinedCallStackPtr} which we will
// serialize separately.
IValue module_debug_tuple =
c10::ivalue::Tuple::create(mobile_code.debug_handles_);
auto function_debug_info =
Table({{"function_debug_handles", module_debug_tuple}});
debug_info_vals = to_tuple({qn, function_debug_info});
return std::make_pair(bytecode_vals, debug_info_vals);
}
void pushMobileFunctionsToIValues(
const CompilationUnit& compilation_unit,
const mobile::Module& module,
std::vector<c10::IValue>& elements,
std::vector<c10::IValue>& debugInfoElements,
BackendDebugInfoRecorder& recorder,
TypeNameUniquer& uniquer) {
for (const auto& method : module.get_methods()) {
auto tuple = getFunctionTuple(
compilation_unit, method.function(), recorder, uniquer);
elements.push_back(std::move(tuple.first));
debugInfoElements.push_back(std::move(tuple.second));
}
}
struct ModuleMethod {
ModuleMethod(const Module& m, const GraphFunction& f, c10::QualifiedName n)
: module(m), function(f), exportName(std::move(n)) {}
Module module;
const GraphFunction& function;
c10::QualifiedName exportName;
};
bool isLoweredModule(const Module& m) {
c10::QualifiedName type_name;
if (m.type()->name()) {
type_name = m.type()->name().value();
}
bool isLoweredModule = false;
for (const auto& atom : type_name.atoms()) {
if (atom == "LoweredModule") {
isLoweredModule = true;
break;
}
}
return isLoweredModule;
}
// Check if the global static map of backend debug info
// contains debug info for this module and any of its children.
// If so combine all the maps together and return one.
void getBackendDebugInfoMap(
const Module& m,
BackendDebugInfoMapType& debug_map) {
if (isLoweredModule(m)) {
auto backend_debug_info =
m.attr("__backend_debug_info").toCustomClass<PyTorchBackendDebugInfo>();
const auto& map = backend_debug_info->getDebugInfoMap();
if (map) {
debug_map.insert(map.value().begin(), map.value().end());
}
}
for (const auto& c : m.children()) {
getBackendDebugInfoMap(c, debug_map);
}
}
SourceRangeRecords getBackendSourceRanges(const Module& m) {
SourceRangeRecords sr_records;
if (isLoweredModule(m)) {
constexpr size_t kSourceRange = 1;
auto backend_debug_info =
m.attr("__backend_debug_info").toCustomClass<PyTorchBackendDebugInfo>();
const auto& map = backend_debug_info->getDebugInfoMap();
if (map) {
const auto& map_val = map.value();
// This map is map of debug handle-to-DebugInfoTuple
// DebugInfoTuple= <source range, op name, inlined_cs_ptr>
for (const auto& it : map_val) {
auto& source_range =
std::get<kDebugInfoTupleSourceRangeIndex>(it.second);
sr_records.emplace_back(
std::numeric_limits<size_t>::max(), source_range);
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
auto cs_ptr = std::get<kDebugInfoTupleInlinedCSIndex>(it.second);
if (cs_ptr) {
for (const auto& e : cs_ptr->vec()) {
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
const auto sr = std::get<kSourceRange>(e);
sr_records.emplace_back(std::numeric_limits<size_t>::max(), sr);
}
}
}
}
}
for (const auto& c : m.children()) {
const auto& child_sr_records = getBackendSourceRanges(c);
sr_records.reserve(sr_records.size() + child_sr_records.size());
std::move(
child_sr_records.begin(),
child_sr_records.end(),
std::back_inserter(sr_records));
}
return sr_records;
}
// TODO: remove mobileInterfaceCallExport as it is no longer needed.
// This function was introduced to guard the usage of `InterfaceCall` and
// now the support for `InterfaceCall` should be mature enough.
auto& mobileInterfaceCallExport() {
static std::atomic<bool> flag{true};
return flag;
}
} // namespace
TORCH_API void enableMobileInterfaceCallExport() {
mobileInterfaceCallExport().store(true, std::memory_order_relaxed);
}
bool getMobileInterfaceCallExport() {
return mobileInterfaceCallExport().load(std::memory_order_relaxed);
}
void SetExportModuleExtraFilesHook(ExportModuleExtraFilesHook hook) {
GetExtraFilesHook() = std::move(hook);
}
void ScriptModuleSerializer::serialize(
const Module& module,
const ExtraFilesMap& extra_files,
bool bytecode_format,
bool save_mobile_debug_info) {
C10_LOG_API_USAGE_ONCE("torch.script.save");
writeExtraFiles(module, extra_files);
// Serialize the model object
writeArchive(
module._ivalue(),
/*archive_name=*/"data",
/*archive_dir=*/"",
/*tensor_dir=*/"data/");
// Then we serialize all code info.
convertTypes(module.type());
writeFiles("code/");
// The tensor constants from the code are written to a separate archive
// so loading the code does not depend on loading the data
std::vector<IValue> ivalue_constants(
constant_table_.begin(), constant_table_.end());
if (bytecode_format) {
writeArchive(
c10::ivalue::Tuple::create(ivalue_constants),
/*archive_name=*/"constants",
/*archive_dir=*/"",
/*tensor_dir=*/"constants/",
/*use_storage_context=*/true);
writeByteCode(module, save_mobile_debug_info);
} else {
writeArchive(
c10::ivalue::Tuple::create(ivalue_constants),
/*archive_name=*/"constants",
/*archive_dir=*/"",
/*tensor_dir=*/"constants/");
}
// Acquires and sets minimum (dynamic) version
for (auto& item : file_streams_) {
writer_.setMinVersion(item.value().minVersion());
}
}
void ScriptModuleSerializer::writeArchive(
const IValue& value,
const std::string& archive_name,
const std::string& archive_dir,
const std::string& tensor_dir,
bool use_storage_context) {
std::vector<char> data;
// Vector to capture the run-time class types during pickling the IValues
std::vector<c10::ClassTypePtr> memoizedClassTypes;
std::vector<std::string> tensor_names;
// tensors that are already serialized in use_storage_context
std::unordered_set<std::string> serialized_tensors;
Pickler data_pickle(
[&](const char* buf, size_t size) {
data.insert(data.end(), buf, buf + size);
},
nullptr,
[&](const c10::ClassTypePtr& t) {
return type_name_uniquer_.getUniqueName(t);
},
&memoizedClassTypes,
[&](const at::Tensor& tensor) {
// returns a string to use in picker.cpp as storage obj key
if (use_storage_context) {
bool already_serialized =
storage_context_.hasStorage(tensor.storage());
std::string tensor_name =
std::to_string(
storage_context_.getOrAddStorage(tensor.storage())) +
".storage";
if (already_serialized) {
// this case is hit when storage has been serialized already
// from a torch.package context
serialized_tensors.insert(tensor_name);
}
tensor_names.push_back(tensor_name);
} else {
tensor_names.push_back(std::to_string(tensor_names.size()));
}
return tensor_names.back();
});
data_pickle.protocol();
data_pickle.pushIValue(value);
data_pickle.stop();
// write out tensor data
size_t i = 0;
std::string prefix = archive_name + "/";
TORCH_INTERNAL_ASSERT(tensor_names.size() == data_pickle.tensorData().size());
for (const auto& td : data_pickle.tensorData()) {
std::string tensor_name = tensor_names[i++];
if (td.is_meta()) {
writer_.writeRecord(tensor_dir + tensor_name, nullptr, 0);
continue;
}
WriteableTensorData writable_td = getWriteableTensorData(td);
if (use_storage_context && serialized_tensors.count(tensor_name)) {
// storage has been serialzed already, skip
continue;
}
writer_.writeRecord(
tensor_dir + tensor_name,
writable_td.data(),
writable_td.sizeInBytes());
}
std::string fname = archive_dir + archive_name + ".pkl";
writer_.writeRecord(fname, data.data(), data.size());
// serialize all the captured run-time class types
for (const c10::ClassTypePtr& wroteType : memoizedClassTypes) {
convertNamedType(wroteType);
}
}
void ScriptModuleSerializer::writeExtraFiles(
const Module& module,
const ExtraFilesMap& extra_files) {
// Write out extra files.
for (const auto& kv : extra_files) {
const std::string key = "extra/" + kv.first;
writer_.writeRecord(key, kv.second.data(), kv.second.size());
}
auto hook = GetExtraFilesHook();
if (hook) {
ExtraFilesMap hook_files = hook(module);
for (const auto& kv : hook_files) {
// Checks if the hooked file is already written in extra files,
// if so, skips it and warns
if (extra_files.find(kv.first) != extra_files.end()) {
TORCH_WARN_ONCE(
"An extra files hook attempted to write ",
kv.first,
" but ",
"this is already written in extra files and so will be skipped. ",
"This warning will only appear once per process.");
continue;
}
const std::string key = "extra/" + kv.first;
writer_.writeRecord(key, kv.second.data(), kv.second.size());
}
}
}
void ScriptModuleSerializer::updateSourceRangeTags(
const SourceRangeRecords& ranges) {
for (const auto& range : ranges) {
if (source_range_tags_.find(range.range) == source_range_tags_.end()) {
source_range_tags_[range.range] = current_source_range_tag_;
current_source_range_tag_++;
}
}
}
void ScriptModuleSerializer::convertTypes(const at::NamedTypePtr& root_type) {
class_deps_.add(root_type);
for (size_t i = 0; i < class_deps_.size(); ++i) {
// note: convertNameType may extend class_deps_, so re-checking .size() is
// necessary
convertNamedType(class_deps_[i]);
}
}
void ScriptModuleSerializer::writeFiles(const std::string& code_dir) {
current_source_range_tag_ = 0;
// Mapping of filename => src. We need this because multiple classes may go
// in the same file (e.g. foo.bar.Baz and foo.bar.Qux)
for (auto& item : file_streams_) {
const std::string filename = qualifierToArchivePath(item.key(), code_dir);
std::string src = item.value().str();
// Only compress these records if they're not tiny.
// The cpu cost of generating zip datastructs and compressing isn't
// well-spent for very small records.
static constexpr size_t kMinToCompress = 200;
writer_.writeRecord(
filename,
src.c_str(),
src.size(),
src.size() > kMinToCompress /*compress*/);
// Write out the debug information
std::string debugFilename = filename + ".debug_pkl";
SourceRangePickler source_range_pickler;
updateSourceRangeTags(item.value().ranges());
auto range_data =
source_range_pickler.pickle(item.value().ranges(), source_range_tags_);
writer_.writeRecord(
debugFilename,
range_data.data(),
range_data.size(),
range_data.size() > kMinToCompress /*compress*/);
}
}
void ScriptModuleSerializer::writeByteCode(
const Module& module,
const bool save_mobile_debug_info) {
std::vector<c10::IValue> elements;
BackendDebugInfoRecorder debug_info_recorder;
int64_t version_to_write = caffe2::serialize::kProducedBytecodeVersion;
elements.emplace_back(static_cast<int64_t>(version_to_write));
std::vector<c10::IValue> debug_info_elements;
// Always save debug handles
debug_info_elements.emplace_back(static_cast<int64_t>(version_to_write));
mobile::Module mobile_module =
jitModuleToMobile(module, getOptionsFromGlobal());
pushMobileFunctionsToIValues(
*module._ivalue()->compilation_unit(),
mobile_module,
elements,
debug_info_elements,
debug_info_recorder,
type_name_uniquer_);
auto telements = to_tuple(std::move(elements));
writeArchive(
telements,
/*archive_name=*/"bytecode",
/*archive_dir=*/"",
/*tensor_dir=*/"constants/",
/*use_storage_context=*/true);
auto debug_info_telements = to_tuple(std::move(debug_info_elements));
// At the moment keeping this feature experimental
// since we have not evaluated how this affect model size
// and we have not build any utility to strip off debug info
// when desired
// TODO: Build utility to strip off debug map. It should also do the
// same for debug_pkl files
if (save_mobile_debug_info) {
// Note that stripping off debug map will not strip off
// debug handles.
// The reason we save debug handles conditionally is so that
// we dont end up with a model that has debug handles but has not
// debug map to correlate debug handels with.
// Once we have a model with both handles and debug map, we can
// strip off debug map and have a lean model served to production.
// If exception ocurrs we have a model with debug map that can be
// used to symbolicate debug handles
writeArchive(
debug_info_telements,
/*archive_name=*/"mobile_debug_handles",
/*archive_dir=*/"",
/*tensor_dir=*/"mobile_debug_handles/");
static constexpr size_t kMinToCompress = 200;
// For delegated backends get source ranges that are in the debug info
// map. Since delegated backend replace original module with lowered
// module we will not serialize original module's code which is what would
// have contained source range. Since we dont have that anymore, extract
// source ranges out of delegated module and store in a separate archive.
// Note that we must do this first because in order to serialize inlined
// CS appropriate source_range_tags must have been generated.
auto backend_source_range_records = getBackendSourceRanges(module);
SourceRangePickler source_range_pickler;
updateSourceRangeTags(backend_source_range_records);
auto range_data = source_range_pickler.pickle(
backend_source_range_records, source_range_tags_);
std::string debugFilename = "delegated_backends.debug_pkl";
writer_.writeRecord(
debugFilename,
range_data.data(),
range_data.size(),
range_data.size() > kMinToCompress /*compress*/);
// For delegated backends get debug_info_map
// This is merged with other debug_info_map of other modules
// which were not delegated.
BackendDebugInfoMapType backend_debug_info_map;
getBackendDebugInfoMap(module, backend_debug_info_map);
// Now get the debug-handles-to-inlined-cs-ptr-map
// And serialize that in a separate archive
const auto& debug_info = mobile_module.getDebugTable().getCallStackPtrMap();
BackendDebugInfoMapType debug_handle_cs_ptr_map(
debug_info.begin(), debug_info.end());
CallStackDebugInfoPickler cs_debug_info_pickler;
auto cs_data = cs_debug_info_pickler.pickle(
debug_handle_cs_ptr_map, source_range_tags_);
// Write out map: [debug-handle, {source range, InlinedCallStack}]
std::string filename = "callstack_debug_map.pkl";
writer_.writeRecord(
filename,
cs_data.data(),
cs_data.size(),
cs_data.size() > kMinToCompress /*compress*/);
}
}
namespace {
c10::optional<std::string> type_printer(
const c10::Type& type,
torch::jit::TypeNameUniquer& type_name_uniquer) {
if (auto dyn = type.castRaw<c10::DynamicType>()) {
return dyn->fallback()->annotation_str(
[&](auto&& t) { return type_printer(t, type_name_uniquer); });
}
auto namedType = type.cast<c10::NamedType>();
if (namedType && namedType->name()) {
return type_name_uniquer.getUniqueName(namedType).qualifiedName();
}
return c10::nullopt;
}
} // namespace
void ScriptModuleSerializer::convertNamedType(
const c10::NamedTypePtr& class_type) {
if (converted_types_.count(class_type)) {
return;
}
converted_types_.insert(class_type);
auto qualname = type_name_uniquer_.getUniqueName(class_type);
std::string qualifier = qualname.prefix();
PythonPrint* pp = file_streams_.find(qualifier);
if (!pp) {
pp = &file_streams_.insert(
std::move(qualifier),
PythonPrint(
constant_table_,
class_deps_,
[&](const c10::Type& t) {
return type_printer(t, type_name_uniquer_);
},
/*enforce_importable=*/true));
}
pp->printNamedType(class_type);
}
void ScriptModuleSerializer::serialize_unified_format(
Module& module,
uint64_t script_module_id) {
const std::string archive_dir =
".data/ts_code/" + std::to_string(script_module_id) + "/";
// Serialize the model object
writeArchive(
module._ivalue(),
"data",
archive_dir,
/*tensor_dir=*/".data/",
/*use_storage_context=*/true);
// Then we serialize all code info.
convertTypes(module.type());
// The tensor constants from the code are written to a separate archive
// so loading the code does not depend on loading the data
std::vector<IValue> ivalue_constants(
constant_table_.begin(), constant_table_.end());
writeArchive(
c10::ivalue::Tuple::create(ivalue_constants),
"constants",
archive_dir,
/*tensor_dir=*/".data/",
/*use_storage_context=*/true);
// Note: writeFiles() call needs to be made in addition to calling this
// function to have the code actually saved (tensors are saved)
}
SerializationStorageContext& ScriptModuleSerializer::storage_context() {
return storage_context_;
}
void ExportModule(
const Module& module,
std::ostream& out,
const ExtraFilesMap& extra_files,
bool bytecode_format,
bool save_mobile_debug_info,
bool use_flatbuffer) {
auto writer_func = [&](const void* buf, size_t nbytes) -> size_t {
out.write(static_cast<const char*>(buf), nbytes);
return !out ? 0 : nbytes;
};
ExportModule(
module,
writer_func,
extra_files,
bytecode_format,
save_mobile_debug_info,
use_flatbuffer);
}
void ExportModule(
const Module& module,
const std::string& filename,
const ExtraFilesMap& extra_files,
bool bytecode_format,
bool save_mobile_debug_info,
bool use_flatbuffer) {
if (!use_flatbuffer) {
// the zip archive need to know the filepath
caffe2::serialize::PyTorchStreamWriter writer(filename);
ScriptModuleSerializer serializer(writer);
serializer.serialize(
module, extra_files, bytecode_format, save_mobile_debug_info);
return;
}
std::ofstream ofile;
ofile.open(filename, std::ios::binary | std::ios::out);
if (ofile.fail()) {
std::stringstream message;
if (errno == ENOENT) {
message << "Parent directory of " << filename << " does not exist.\n";
} else {
message << "Error while opening file: " << errno << std::endl;
;
}
TORCH_CHECK(false, message.str());
}
ExportModule(
module,
ofile,
extra_files,
bytecode_format,
save_mobile_debug_info,
use_flatbuffer);
}
void save_jit_module(
const Module& module,
const std::string& filename,
const ExtraFilesMap& extra_files) {
auto buffer = save_jit_module_to_bytes(module, extra_files);
std::fstream ofile(filename, std::ios::binary | std::ios::out);
ofile.write(
reinterpret_cast<char*>(buffer->data()), buffer->size()); // NOLINT
ofile.close();
}
DetachedBuffer::UniqueDetachedBuffer save_jit_module_to_bytes(
const Module& module,
const ExtraFilesMap& extra_files) {
ExtraFilesMap jitfiles;
std::vector<IValue> constants;
jitModuleToPythonCodeAndConstants(module, &jitfiles, &constants);
CompilationOptions options = getOptionsFromGlobal();
mobile::Module mobilem = jitModuleToMobile(module, options);
return save_mobile_module_to_bytes(mobilem, extra_files, jitfiles, constants);
}
void save_jit_module_to_write_func(
const Module& module,
const ExtraFilesMap& extra_files,
bool save_mobile_debug_info,
const std::function<size_t(const void*, size_t)>& writer_func) {
(void)save_mobile_debug_info;
auto buffer = save_jit_module_to_bytes(module, extra_files);
writer_func(reinterpret_cast<void*>(buffer->data()), buffer->size());
}
void ExportModule(
const Module& module,
const std::function<size_t(const void*, size_t)>& writer_func,
const ExtraFilesMap& extra_files,
bool bytecode_format,
bool save_mobile_debug_info,
bool use_flatbuffer) {
if (use_flatbuffer) {
save_jit_module_to_write_func(
module, extra_files, save_mobile_debug_info, writer_func);
} else {
caffe2::serialize::PyTorchStreamWriter writer(writer_func);
ScriptModuleSerializer serializer(writer);
serializer.serialize(
module, extra_files, bytecode_format, save_mobile_debug_info);
}
}
namespace {
void export_opnames(const script::Module& m, std::set<std::string>& opnames) {
mobile::Module mobile_m = jitModuleToMobile(m, getOptionsFromGlobal());
for (const auto& method : mobile_m.get_methods()) {
for (const auto& op : method.function().get_code().op_names_) {
// NOLINTNEXTLINE(performance-inefficient-string-concatenation)
opnames.emplace(
op.overload_name.empty() ? op.name
: op.name + "." + op.overload_name);
}
}
}
} // namespace
std::vector<std::string> export_opnames(const script::Module& m) {
std::set<std::string> names;
export_opnames(m, names);
return std::vector<std::string>(names.begin(), names.end());
}
// Thread local flag (only happens in export, i.e. on server side)
// to control if instructions for bytecode default inputs are emitted
// or not. It's the major difference between bytecode v5 and v6.
thread_local bool emitBytecodeDefaultInputs =
caffe2::serialize::kProducedBytecodeVersion <= 5 ? true : false;
bool BytecodeEmitMode::is_default_value_for_unspecified_arg_enabled() {
return emitBytecodeDefaultInputs;
}
void BytecodeEmitMode::set_default_value_for_unspecified_arg_enabled(
bool enabled) {
emitBytecodeDefaultInputs = enabled;
}
thread_local bool emitDefautlArgsWithOutArgs =
caffe2::serialize::kProducedBytecodeVersion <= 6 ? false : true;
bool BytecodeEmitMode::is_default_args_before_out_args_enabled() {
return emitDefautlArgsWithOutArgs;
}
void BytecodeEmitMode::set_default_args_before_out_args_enabled(bool enabled) {
emitDefautlArgsWithOutArgs = enabled;
}
thread_local bool emitDefaultEmitPromotedOps =
caffe2::serialize::kProducedBytecodeVersion <= 7 ? false : true;
bool BytecodeEmitMode::is_emit_promoted_ops_enabled() {
return emitDefaultEmitPromotedOps;
}
void BytecodeEmitMode::set_default_emit_promoted_ops_enabled(bool enabled) {
emitDefaultEmitPromotedOps = enabled;
}
} // namespace torch::jit