forked from AllenDowney/BayesMadeSimple
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sat.py
195 lines (144 loc) · 4.43 KB
/
sat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
"""This file contains code used in "Think Bayes",
by Allen B. Downey, available from greenteapress.com
Copyright 2012 Allen B. Downey
License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html
"""
from __future__ import print_function, division
import csv
import thinkbayes
import thinkplot
def ReadScale(filename='sat_scale.csv', col=2):
"""Reads a CSV file of SAT scales (maps from raw score to standard score).
Args:
filename: string filename
col: which column to start with (0=Reading, 2=Math, 4=Writing)
Returns: thinkbayes.Interpolator object
"""
def ParseRange(s):
t = [int(x) for x in s.split('-')]
return 1.0 * sum(t) / len(t)
fp = open(filename)
reader = csv.reader(fp)
raws = []
scores = []
for t in reader:
try:
raw = int(t[col])
raws.append(raw)
score = ParseRange(t[col+1])
scores.append(score)
except:
pass
raws.sort()
scores.sort()
return thinkbayes.Interpolator(raws, scores)
def ReadRanks(filename='sat_ranks.csv'):
"""Reads a CSV file of SAT scores.
Args:
filename: string filename
Returns:
list of (score, freq) pairs
"""
fp = open(filename)
reader = csv.reader(fp)
res = []
for t in reader:
try:
score = int(t[0])
freq = int(t[1])
res.append((score, freq))
except ValueError:
pass
return res
def DivideValues(pmf, denom):
"""Divides the values in a Pmf by denom.
Returns a new Pmf.
"""
new = thinkbayes.Pmf()
denom = float(denom)
for val, prob in pmf.Items():
x = val / denom
new.Set(x, prob)
return new
class Exam(object):
"""Encapsulates information about an exam.
Contains the distribution of scaled scores and an
Interpolator that maps between scaled and raw scores.
"""
def __init__(self):
self.scale = ReadScale()
scores = ReadRanks()
score_pmf = thinkbayes.MakePmfFromDict(dict(scores))
self.raw = self.ReverseScale(score_pmf)
self.max_score = max(self.raw.Values())
self.prior = DivideValues(self.raw, denom=self.max_score)
def Lookup(self, raw):
"""Looks up a raw score and returns a scaled score."""
return self.scale.Lookup(raw)
def Reverse(self, score):
"""Looks up a scaled score and returns a raw score.
Since we ignore the penalty, negative scores round up to zero.
"""
raw = self.scale.Reverse(score)
return raw if raw > 0 else 0
def ReverseScale(self, pmf):
"""Applies the reverse scale to the values of a PMF.
Args:
pmf: Pmf object
scale: Interpolator object
Returns:
new Pmf
"""
new = thinkbayes.Pmf()
for val, prob in pmf.Items():
raw = self.Reverse(val)
new.Incr(raw, prob)
return new
class Sat(thinkbayes.Suite):
"""Represents the distribution of efficacy for a test-taker."""
def __init__(self, exam):
thinkbayes.Suite.__init__(self)
self.exam = exam
# start with the prior distribution
for x, prob in exam.prior.Items():
self.Set(x, prob)
def Likelihood(self, data, hypo):
"""Computes the likelihood of a test score, given x."""
x = hypo
score = data
raw = self.exam.Reverse(score)
yes, no = raw, self.exam.max_score - raw
like = x**yes * (1-x)**no
return like
def PmfProbGreater(pmf1, pmf2):
"""Probability that a value from pmf1 is less than a value from pmf2.
Args:
pmf1: Pmf object
pmf2: Pmf object
Returns:
float probability
"""
total = 0.0
for x1, p1 in pmf1.Items():
for x2, p2 in pmf2.Items():
# Fill this in!
pass
return total
def main():
exam = Exam()
alice = Sat(exam)
alice.label = 'alice'
alice.Update(780)
bob = Sat(exam)
bob.label = 'bob'
bob.Update(760)
print('Prob Alice is "smarter":', PmfProbGreater(alice, bob))
print('Prob Bob is "smarter":', PmfProbGreater(bob, alice))
thinkplot.PrePlot(2)
thinkplot.Pdfs([alice, bob])
thinkplot.Show(xlabel='x',
ylabel='Probability',
loc='upper left',
xlim=[0.7, 1.02])
if __name__ == '__main__':
main()