forked from rail-berkeley/rlkit
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsawyer_door.py
122 lines (118 loc) · 4.38 KB
/
sawyer_door.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import os.path as osp
import multiworld.envs.mujoco as mwmj
import rlkit.util.hyperparameter as hyp
from multiworld.envs.mujoco.cameras import sawyer_door_env_camera_v0
from rlkit.launchers.launcher_util import run_experiment
import rlkit.torch.vae.vae_schedules as vae_schedules
from rlkit.launchers.skewfit_experiments import \
skewfit_full_experiment
from rlkit.torch.vae.conv_vae import imsize48_default_architecture
if __name__ == "__main__":
variant = dict(
algorithm='Skew-Fit-SAC',
double_algo=False,
online_vae_exploration=False,
imsize=48,
env_id='SawyerDoorHookResetFreeEnv-v1',
init_camera=sawyer_door_env_camera_v0,
skewfit_variant=dict(
save_video=True,
custom_goal_sampler='replay_buffer',
online_vae_trainer_kwargs=dict(
beta=20,
lr=1e-3,
),
save_video_period=50,
qf_kwargs=dict(hidden_sizes=[400, 300], ),
policy_kwargs=dict(hidden_sizes=[400, 300], ),
twin_sac_trainer_kwargs=dict(
reward_scale=1,
discount=0.99,
soft_target_tau=1e-3,
target_update_period=1,
use_automatic_entropy_tuning=True,
),
max_path_length=100,
algo_kwargs=dict(
batch_size=1024,
num_epochs=170,
num_eval_steps_per_epoch=500,
num_expl_steps_per_train_loop=500,
num_trains_per_train_loop=1000,
min_num_steps_before_training=10000,
vae_training_schedule=vae_schedules.custom_schedule,
oracle_data=False,
vae_save_period=50,
parallel_vae_train=False,
),
replay_buffer_kwargs=dict(
start_skew_epoch=10,
max_size=int(100000),
fraction_goals_rollout_goals=0.2,
fraction_goals_env_goals=0.5,
exploration_rewards_type='None',
vae_priority_type='vae_prob',
priority_function_kwargs=dict(
sampling_method='importance_sampling',
decoder_distribution='gaussian_identity_variance',
num_latents_to_sample=10,
),
power=-0.5,
relabeling_goal_sampling_mode='custom_goal_sampler',
),
exploration_goal_sampling_mode='custom_goal_sampler',
evaluation_goal_sampling_mode='presampled',
training_mode='train',
testing_mode='test',
reward_params=dict(type='latent_distance', ),
observation_key='latent_observation',
desired_goal_key='latent_desired_goal',
presampled_goals_path=osp.join(
osp.dirname(mwmj.__file__),
"goals",
"door_goals.npy",
),
presample_goals=True,
vae_wrapped_env_kwargs=dict(sample_from_true_prior=True, ),
),
train_vae_variant=dict(
representation_size=16,
beta=20,
num_epochs=0,
dump_skew_debug_plots=False,
decoder_activation='gaussian',
generate_vae_dataset_kwargs=dict(
N=2,
test_p=.9,
use_cached=True,
show=False,
oracle_dataset=False,
n_random_steps=1,
non_presampled_goal_img_is_garbage=True,
),
vae_kwargs=dict(
decoder_distribution='gaussian_identity_variance',
input_channels=3,
architecture=imsize48_default_architecture,
),
algo_kwargs=dict(lr=1e-3, ),
save_period=1,
),
)
search_space = {}
sweeper = hyp.DeterministicHyperparameterSweeper(
search_space,
default_parameters=variant,
)
n_seeds = 1
mode = 'local'
exp_prefix = 'dev-{}'.format(__file__.replace('/', '-').replace('_', '-').split('.')[0])
for exp_id, variant in enumerate(sweeper.iterate_hyperparameters()):
for _ in range(n_seeds):
run_experiment(
skewfit_full_experiment,
exp_prefix=exp_prefix,
mode=mode,
variant=variant,
use_gpu=True,
)