-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_ner_no_trainer_.py
956 lines (850 loc) · 39.4 KB
/
run_ner_no_trainer_.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning a 🤗 Transformers model on token classification tasks (NER, POS, CHUNKS) relying on the accelerate library
without using a Trainer.
"""
import argparse
import logging
import math
import os
import random
import numpy as np
import datasets
import torch
from datasets import ClassLabel, load_dataset, load_metric
from torch.utils.data.dataloader import DataLoader
from tqdm.auto import tqdm
import transformers
from accelerate import Accelerator
from transformers import (
CONFIG_MAPPING,
MODEL_MAPPING,
AdamW,
AutoConfig,
AutoModelForTokenClassification,
AutoTokenizer,
DataCollatorForTokenClassification,
SchedulerType,
default_data_collator,
get_scheduler,
set_seed,
BertForTokenClassification
)
from transformers.utils.versions import require_version
import time
# from classifier import MyBertForTokenClassification_clusterloss_test
from classifier_fine import MyBertForTokenClassification_prototype
#from classifier_ori import OriBertForTokenClassification
logger = logging.getLogger(__name__)
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")
# You should update this to your particular problem to have better documentation of `model_type`
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
def parse_args():
parser = argparse.ArgumentParser(
description="Finetune a transformers model on a text classification task (NER) with accelerate library"
)
parser.add_argument(
"--dataset_name",
type=str,
default=None,
help="The name of the dataset to use (via the datasets library).",
)
parser.add_argument(
"--dataset_config_name",
type=str,
default=None,
help="The configuration name of the dataset to use (via the datasets library).",
)
parser.add_argument(
"--sample_path",
type=str,
default=None,
help="The configuration name of the dataset to use (via the datasets library).",
)
parser.add_argument(
"--train_file", type=str, default=None, help="A csv or a json file containing the training data."
)
parser.add_argument(
"--validation_file", type=str, default=None, help="A csv or a json file containing the validation data."
)
parser.add_argument(
"--text_column_name",
type=str,
default=None,
help="The column name of text to input in the file (a csv or JSON file).",
)
parser.add_argument(
"--label_column_name",
type=str,
default=None,
help="The column name of label to input in the file (a csv or JSON file).",
)
parser.add_argument(
"--max_length",
type=int,
default=128,
help=(
"The maximum total input sequence length after tokenization. Sequences longer than this will be truncated,"
" sequences shorter will be padded if `--pad_to_max_lenght` is passed."
),
)
parser.add_argument(
"--pad_to_max_length",
action="store_true",
help="If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.",
)
parser.add_argument(
"--model_name_or_path",
type=str,
help="Path to pretrained model or model identifier from huggingface.co/models.",
required=True,
)
parser.add_argument(
"--config_name",
type=str,
default=None,
help="Pretrained config name or path if not the same as model_name",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=4,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--per_device_eval_batch_size",
type=int,
default=128,
help="Batch size (per device) for the evaluation dataloader.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.")
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--lr_scheduler_type",
type=SchedulerType,
default="linear",
help="The scheduler type to use.",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
)
parser.add_argument(
"--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.")
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--model_type",
type=str,
default=None,
help="Model type to use if training from scratch.",
choices=MODEL_TYPES,
)
parser.add_argument(
"--label_all_tokens",
action="store_true",
help="Setting labels of all special tokens to -100 and thus PyTorch will ignore them.",
)
parser.add_argument(
"--return_entity_level_metrics",
action="store_true",
help="Indication whether entity level metrics are to be returner.",
)
parser.add_argument(
"--task_name",
type=str,
default="ner",
choices=["ner", "pos", "chunk"],
help="The name of the task.",
)
parser.add_argument(
"--save_mode",
type=str,
default="best",
choices=["best", "last"],
help="Save the best or the final model.",
)
parser.add_argument(
"--debug",
action="store_true",
help="Activate debug mode and run training only with a subset of data.",
)
parser.add_argument(
"--eval_last_epoch",
action="store_true",
help="Only evaluate the last epoch.",
)
parser.add_argument(
"--label_schema",
type=str,
default="BIO",
)
parser.add_argument(
"--label_list", type=str, default=None, help="Path of label list."
)
parser.add_argument(
"--probe",
action="store_true",
help="Whether probing.",
)
parser.add_argument(
"--only_eval",
action="store_true",
help="Whether only evaluate.",
)
parser.add_argument(
"--use_ori_cls",
action="store_true",
help="Whether use the vallina classifier.",
)
parser.add_argument(
"--no_save",
action="store_true",
help="Whether save model.",
)
parser.add_argument(
"--sample_id", type=str, default=None, help="Sample ids."
)
parser.add_argument(
"--use_aug",
action="store_true",
help="Whether use augmented data.",
)
args = parser.parse_args()
args.save = not args.no_save
if args.probe:
args.save = False
# Sanity checks
if args.task_name is None and args.train_file is None and args.validation_file is None:
raise ValueError("Need either a task name or a training/validation file.")
else:
if args.train_file is not None:
extension = args.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if args.validation_file is not None:
extension = args.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
return args
def main():
args = parse_args()
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
accelerator = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state)
# Setup logging, we only want one process per machine to log things on the screen.
# accelerator.is_local_main_process is only True for one process per machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets for token classification task available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'tokens' or the first column if no column called
# 'tokens' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name)
else:
data_files = {}
if args.train_file is not None:
data_files["train"] = args.train_file
if args.validation_file is not None:
data_files["validation"] = args.validation_file
extension = args.train_file.split(".")[-1]
raw_datasets = load_dataset(extension, data_files=data_files)
# Trim a number of training examples
if args.debug:
for split in raw_datasets.keys():
raw_datasets[split] = raw_datasets[split].select(range(100))
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
if raw_datasets["train"] is not None:
column_names = raw_datasets["train"].column_names
features = raw_datasets["train"].features
else:
column_names = raw_datasets["validation"].column_names
features = raw_datasets["validation"].features
if args.text_column_name is not None:
text_column_name = args.text_column_name
elif "tokens" in column_names:
text_column_name = "tokens"
else:
text_column_name = column_names[0]
if args.label_column_name is not None:
label_column_name = args.label_column_name
elif f"{args.task_name}_tags" in column_names:
label_column_name = f"{args.task_name}_tags"
else:
label_column_name = column_names[1]
# In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
# unique labels.
def get_label_list(labels):
# unique_labels = set()
# for label in labels:
# unique_labels = unique_labels | set(label)
# label_list = list(unique_labels)
# label_list.sort()
## conll
# label_list = ["B-PER", "I-PER", "B-LOC", "I-LOC", "B-ORG", "I-ORG", "B-MISC", "I-MISC", "O"]
# label_list.sort()
## ontonotes dNUM
# IO
if args.label_schema == "IO":
with open(args.label_list, "r") as f:
label_list = [l.strip() for l in f.readlines() if not l.strip().startswith("B-")]
else:
with open(args.label_list, "r") as f:
label_list = [l.strip() for l in f.readlines()]
return label_list
if isinstance(features[label_column_name].feature, ClassLabel):
label_list = features[label_column_name].feature.names
# No need to convert the labels since they are already ints.
label_to_id = {i: i for i in range(len(label_list))}
else:
label_list = get_label_list(raw_datasets["train"][label_column_name])
label_to_id = {l: i for i, l in enumerate(label_list)}
# IO
num_labels = len(label_list)
# if BIO TODO
if args.label_schema == "IO":
import copy
ori_label_to_id = copy.deepcopy(label_to_id)
ori_label_list = copy.deepcopy(label_list)
for label, id in label_to_id.items():
if label != "O" and "B-" + label[2:] not in label_to_id:
ori_label_to_id["B-" + label[2:]] = len(ori_label_to_id)
ori_label_list.append("B-" + label[2:])
else:
ori_label_list = label_list
ori_label_to_id = label_to_id
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if args.config_name:
config = AutoConfig.from_pretrained(args.config_name, num_labels=num_labels)
elif args.model_name_or_path:
config = AutoConfig.from_pretrained(args.model_name_or_path, num_labels=num_labels)
else:
config = CONFIG_MAPPING[args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
if args.sample_id is not None:
config.sample_id = args.sample_id
if args.sample_path is not None:
config.sample_path=args.sample_path
tokenizer_name_or_path = args.tokenizer_name if args.tokenizer_name else args.model_name_or_path
if not tokenizer_name_or_path:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
if config.model_type in {"gpt2", "roberta"}:
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path, use_fast=True, add_prefix_space=True)
else:
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path, use_fast=True, do_lower_case=False)
if args.only_eval and args.output_dir:
args.model_name_or_path = args.output_dir
if args.model_name_or_path:
if args.use_ori_cls:
model = BertForTokenClassification.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
ignore_mismatched_sizes=True
)
else:
config.model_name = args.model_name_or_path.split("/")[-1]
config.use_aug = args.use_aug
model = MyBertForTokenClassification_prototype.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
ignore_mismatched_sizes=True
)
else:
logger.info("Training new model from scratch")
model = AutoModelForTokenClassification.from_config(config)
model.resize_token_embeddings(len(tokenizer))
# Preprocessing the datasets.
# First we tokenize all the texts.
padding = "max_length" if args.pad_to_max_length else False
# Tokenize all texts and align the labels with them.
def tokenize_and_align_labels(examples):
tokenized_inputs = tokenizer(
examples[text_column_name],
max_length=args.max_length,
padding=padding,
truncation=True,
# We use this argument because the texts in our dataset are lists of words (with a label for each word).
is_split_into_words=True,
)
labels = []
ori_labels = []
# gold_labels = examples[label_column_name]
# if args.label_schema=='IO':
# gold_labels = [['I-{}'.format(l[2:]) if l !='O' else 'O' for l in label] for label in gold_labels]
for i, label in enumerate(examples[label_column_name]):
word_ids = tokenized_inputs.word_ids(batch_index=i)
previous_word_idx = None
label_ids = []
ori_label_ids = []
for word_idx in word_ids:
# Special tokens have a word id that is None. We set the label to -100 so they are automatically
# ignored in the loss function.
# ori_label = label[word_idx]
# if args.label_schema=='IO':
# label[word_idx] = "I-"+label[word_idx][2:] if label[word_idx] and label[word_idx] != "O" else label[word_idx]
if word_idx is None:
label_ids.append(-100)
ori_label_ids.append(-100)
# We set the label for the first token of each word.
elif word_idx != previous_word_idx:
ori_label_ids.append(ori_label_to_id[label[word_idx]])
if args.label_schema == "IO":
label_ids.append(
label_to_id["I-" + label[word_idx][2:] if label[word_idx] != "O" else label[word_idx]])
else:
label_ids.append(
label_to_id[label[word_idx]])
# For the other tokens in a word, we set the label to either the current label or -100, depending on
# the label_all_tokens flag.
else:
ori_label_ids.append(ori_label_to_id[label[word_idx]] if args.label_all_tokens else -100)
if args.label_schema == "IO":
label_ids.append(label_to_id["I-" + label[word_idx][2:] if label[word_idx] != "O" else label[
word_idx]] if args.label_all_tokens else -100)
else:
label_ids.append(label_to_id[label[word_idx]] if args.label_all_tokens else -100)
previous_word_idx = word_idx
labels.append(label_ids)
ori_labels.append(ori_label_ids)
tokenized_inputs["labels"] = labels
tokenized_inputs["ori_labels"] = ori_labels
return tokenized_inputs
processed_raw_datasets = raw_datasets.map(
tokenize_and_align_labels,
batched=True,
remove_columns=raw_datasets["train"].column_names,
desc="Running tokenizer on dataset",
)
train_dataset = processed_raw_datasets["train"]
eval_dataset = processed_raw_datasets["validation"]
# Log a few random samples from the training set:
for index in random.sample(range(len(train_dataset)), 3):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
# DataLoaders creation:
if args.pad_to_max_length:
# If padding was already done ot max length, we use the default data collator that will just convert everything
# to tensors.
data_collator = default_data_collator
else:
# Otherwise, `DataCollatorForTokenClassification` will apply dynamic padding for us (by padding to the maximum length of
# the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple
# of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).
data_collator = DataCollatorForLMTokanClassification(
tokenizer, pad_to_multiple_of=(8 if accelerator.use_fp16 else None)
)
train_dataloader = DataLoader(
train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size
)
eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size)
# Optimizer
# Split weights in two groups, one with weight decay and the other not.
no_decay = ["bias", "LayerNorm.weight"]
if args.probe:
print("probing!")
retain_key = "classifier" # classifier
else:
retain_key = ""
a = [n for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) and retain_key in n]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if
not any(nd in n for nd in no_decay) and retain_key in n],
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay) and retain_key in n],
"weight_decay": 0.0,
},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
# Use the device given by the `accelerator` object.
device = accelerator.device
model.to(device)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader
)
# Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
# shorter in multiprocess)
# Scheduler and math around the number of training steps.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
else:
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps,
num_training_steps=args.max_train_steps,
)
# Metrics
# print('loading metric.....')
metric = load_metric("seqeval_metric.py")
# print('loading metric.....done!')
def switch_to_BIO(labels):
past_label = 'O'
labels_BIO = []
for label in labels:
if label.startswith('I-') and (past_label == 'O' or past_label[2:] != label[2:]):
labels_BIO.append('B-' + label[2:])
else:
labels_BIO.append(label)
past_label = label
return labels_BIO
def get_labels(predictions, references, tokens):
# Transform predictions and references tensos to numpy arrays
if device.type == "cpu":
y_pred = predictions.detach().clone().numpy()
y_true = references.detach().clone().numpy()
x_tokens = tokens.detach().clone().numpy()
else:
y_pred = predictions.detach().cpu().clone().numpy()
y_true = references.detach().cpu().clone().numpy()
x_tokens = tokens.detach().cpu().clone().tolist()
# Remove ignored index (special tokens)
true_predictions = [
[ori_label_list[p] for (p, l) in zip(pred, gold_label) if l != -100]
for pred, gold_label in zip(y_pred, y_true)
]
true_labels = [
[ori_label_list[l] for (p, l) in zip(pred, gold_label) if l != -100]
for pred, gold_label in zip(y_pred, y_true)
]
if args.label_schema == "IO":
true_predictions = list(map(switch_to_BIO, true_predictions))
true_labels = list(map(switch_to_BIO, true_labels))
ori_tokens = [
[tokenizer.convert_ids_to_tokens(t) for (p, l, t) in zip(pred, gold_label, token) if l != -100]
for pred, gold_label, token in zip(y_pred, y_true, x_tokens)
]
return true_predictions, true_labels, ori_tokens
def compute_metrics():
results = metric.compute()
if args.return_entity_level_metrics:
# Unpack nested dictionaries
final_results = {}
macro_results = {"macro_f1": 0., "macro_precision": 0., "macro_recall": 0., "class_num": 0}
for key, value in results.items():
if isinstance(value, dict):
for n, v in value.items():
final_results[f"{key}_{n}"] = v
macro_results["macro_f1"] += value["f1"]
macro_results["macro_precision"] += value["precision"]
macro_results["macro_recall"] += value["recall"]
macro_results["class_num"] += 1
else:
final_results[key] = value
for key, value in macro_results.items():
if key != "class_num":
final_results[key] = macro_results[key] / macro_results["class_num"]
return final_results
else:
return {
"precision": results["overall_precision"],
"recall": results["overall_recall"],
"f1": results["overall_f1"],
"accuracy": results["overall_accuracy"],
}
def evaluate(best_metric=-1, save=True):
model.eval()
start = time.time()
token_list = []
y_true = []
y_pred = []
hiddens = None
all_labels = None
pro_bar = tqdm(range(len(eval_dataloader)))
for step, batch in enumerate(eval_dataloader):
labels = batch.pop("ori_labels")
_ = batch.pop("labels")
with torch.no_grad():
outputs = model(**batch)
predictions = outputs.logits.argmax(dim=-1)
token_labels = batch.pop("input_ids")
if not args.pad_to_max_length: # necessary to pad predictions and labels for being gathered
predictions = accelerator.pad_across_processes(predictions, dim=1, pad_index=-100)
labels = accelerator.pad_across_processes(labels, dim=1, pad_index=-100)
token_labels = accelerator.pad_across_processes(token_labels, dim=1, pad_index=-100)
predictions_gathered = accelerator.gather(predictions)
labels_gathered = accelerator.gather(labels)
token_labels_gathered = accelerator.gather(token_labels)
preds, refs, tokens = get_labels(predictions_gathered, labels_gathered, token_labels_gathered)
token_list.extend(tokens)
y_true.extend(refs)
y_pred.extend(preds)
metric.add_batch(
predictions=preds,
references=refs,
) # predictions and preferences are expected to be a nested list of labels, not label_ids
pro_bar.update(1)
# eval_metric = metric.compute()
eval_metric = compute_metrics()
# accelerator.print(f"epoch {epoch}:", eval_metric)
print("Decoding time: {}".format(time.time() - start))
for key in eval_metric.keys():
if "f1" in key and "overall" not in key and "macro" not in key:
label = key[:-3]
print("{}: {}, {}: {}, {}: {}, {}: {}".format(label + "_precision", eval_metric[label + "_precision"],
label + "_recall", eval_metric[label + "_recall"],
label + "_f1", eval_metric[label + "_f1"],
label + "_number", eval_metric[label + "_number"]))
label = "overall"
print("{}: {}, {}: {}, {}: {}, {}: {}".format(label + "_precision", eval_metric[label + "_precision"],
label + "_recall", eval_metric[label + "_recall"],
label + "_f1", eval_metric[label + "_f1"],
label + "_accuracy", eval_metric[label + "_accuracy"]))
label = "macro"
print("{}: {}, {}: {}, {}: {}".format(label + "_precision", eval_metric[label + "_precision"],
label + "_recall", eval_metric[label + "_recall"],
label + "_f1", eval_metric[label + "_f1"]))
if best_metric == -1 or best_metric["overall_f1"] < eval_metric["overall_f1"]:
best_metric = eval_metric
with open(os.path.join(args.output_dir, "predictions.txt"), "w") as f:
for i in range(len(y_true)):
for j in range(len(y_true[i])):
f.write(f"{token_list[i][j]} {y_true[i][j]} {y_pred[i][j]}\n")
f.write("\n")
if args.save_mode == "best" and save:
print("Saving model to {}".format(args.output_dir))
if args.output_dir is not None:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save)
tokenizer.save_pretrained(args.output_dir)
return best_metric
def evaluate_with_dump(best_metric=-1, save=True):
model.eval()
start = time.time()
token_list = []
y_true = []
y_pred = []
hiddens = None
all_labels = None
for step, batch in enumerate(eval_dataloader):
labels = batch.pop("ori_labels")
batch["output_hidden_states"] = True
with torch.no_grad():
outputs = model(**batch)
predictions = outputs.logits.argmax(dim=-1)
hidden_outputs = outputs.hidden_states[-1].detach().cpu()
all_label = labels.detach().cpu()
if hiddens is not None:
hiddens = torch.cat([hiddens, hidden_outputs.view(-1, hidden_outputs.size(-1))], dim=0)
all_labels = torch.cat([all_labels, all_label.view(-1)], dim=0)
else:
hiddens = hidden_outputs.view(-1, hidden_outputs.size(-1))
all_labels = all_label.view(-1)
labels = batch["labels"]
token_labels = batch.pop("input_ids")
if not args.pad_to_max_length: # necessary to pad predictions and labels for being gathered
predictions = accelerator.pad_across_processes(predictions, dim=1, pad_index=-100)
labels = accelerator.pad_across_processes(labels, dim=1, pad_index=-100)
token_labels = accelerator.pad_across_processes(token_labels, dim=1, pad_index=-100)
predictions_gathered = accelerator.gather(predictions)
labels_gathered = accelerator.gather(labels)
token_labels_gathered = accelerator.gather(token_labels)
preds, refs, tokens = get_labels(predictions_gathered, labels_gathered, token_labels_gathered)
token_list.extend(tokens)
y_true.extend(refs)
y_pred.extend(preds)
metric.add_batch(
predictions=preds,
references=refs,
) # predictions and preferences are expected to be a nested list of labels, not label_ids
# eval_metric = metric.compute()
eval_metric = compute_metrics()
# accelerator.print(f"epoch {epoch}:", eval_metric)
print("Decoding time: {}".format(time.time() - start))
for key in eval_metric.keys():
if "f1" in key and "overall" not in key and "macro" not in key:
label = key[:-3]
print("{}: {}, {}: {}, {}: {}, {}: {}".format(label + "_precision", eval_metric[label + "_precision"],
label + "_recall", eval_metric[label + "_recall"],
label + "_f1", eval_metric[label + "_f1"],
label + "_number", eval_metric[label + "_number"]))
label = "overall"
print("{}: {}, {}: {}, {}: {}, {}: {}".format(label + "_precision", eval_metric[label + "_precision"],
label + "_recall", eval_metric[label + "_recall"],
label + "_f1", eval_metric[label + "_f1"],
label + "_accuracy", eval_metric[label + "_accuracy"]))
label = "macro"
print("{}: {}, {}: {}, {}: {}".format(label + "_precision", eval_metric[label + "_precision"],
label + "_recall", eval_metric[label + "_recall"],
label + "_f1", eval_metric[label + "_f1"]))
if best_metric == -1 or best_metric["overall_f1"] < eval_metric["overall_f1"]:
best_metric = eval_metric
with open(os.path.join(args.output_dir, "predictions.txt"), "w") as f:
for i in range(len(y_true)):
for j in range(len(y_true[i])):
f.write(f"{token_list[i][j]} {y_true[i][j]} {y_pred[i][j]}\n")
f.write("\n")
if args.save_mode == "best" and save:
print("Saving model to {}".format(args.output_dir))
if args.output_dir is not None:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save)
tokenizer.save_pretrained(args.output_dir)
hiddens = hiddens.numpy()
y_true = all_labels.numpy()
valid_hiddens = []
valid_labels = []
for l, h in zip(y_true, hiddens):
if l != -100:
valid_labels.append(ori_label_list[l])
valid_hiddens.append(h)
valid_labels = np.array(valid_labels)
valid_hiddens = np.array(valid_hiddens)
np.save(os.path.join(args.output_dir, "embeddings.npy"), valid_hiddens)
np.save(os.path.join(args.output_dir, "labels.npy"), valid_labels)
return best_metric
if args.only_eval:
# evaluate_with_dump(save=False)
evaluate(save=False)
else:
# Train!
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
completed_steps = 0
best_metric = -1
for epoch in range(args.num_train_epochs):
if not args.use_ori_cls and epoch % 10 == 0:
model.update_cluster_label()
model.train()
for step, batch in enumerate(train_dataloader):
ori_labels = batch.pop("ori_labels")
outputs = model(**batch)
loss = outputs.loss
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
completed_steps += 1
if completed_steps >= args.max_train_steps:
break
# set when to eval
if args.eval_last_epoch:
if epoch == args.num_train_epochs - 1:
best_metric = evaluate(best_metric, args.save)
elif epoch >= 0:
best_metric = evaluate(best_metric, args.save)
print("Finish training, best metric: ")
print(best_metric)
with open(os.path.join(args.output_dir, "results.txt"), "w") as f:
f.write(f"{best_metric}")
if args.save_mode == "last":
print("Saving final model to {}".format(args.output_dir))
if args.output_dir is not None:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save)
tokenizer.save_pretrained(args.output_dir)
class DataCollatorForLMTokanClassification(DataCollatorForTokenClassification):
def __call__(self, features):
label_name = "label" if "label" in features[0].keys() else "labels"
labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
ori_labels = [feature['ori_labels'] for feature in features] if 'ori_labels' in features[0].keys() else None
batch = self.tokenizer.pad(
features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
# Conversion to tensors will fail if we have labels as they are not of the same length yet.
return_tensors="pt" if labels is None else None,
)
if labels is None:
return batch
sequence_length = torch.tensor(batch["input_ids"]).shape[1]
padding_side = self.tokenizer.padding_side
if padding_side == "right":
batch["labels"] = [label + [self.label_pad_token_id] * (sequence_length - len(label)) for label in labels]
batch['ori_labels'] = [label + [self.label_pad_token_id] * (sequence_length - len(label)) for label in
ori_labels]
else:
batch["labels"] = [[self.label_pad_token_id] * (sequence_length - len(label)) + label for label in labels]
batch["ori_labels"] = [[self.label_pad_token_id] * (sequence_length - len(label)) + label for label in
ori_labels]
batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}
return batch
if __name__ == "__main__":
main()