-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathout.html
131 lines (131 loc) · 13.8 KB
/
out.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta http-equiv="Content-Style-Type" content="text/css" />
<meta name="generator" content="pandoc" />
<title></title>
<style type="text/css">code{white-space: pre;}</style>
<link rel="stylesheet" href="markdown3.css" type="text/css" />
<script src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS_CHTML-full" type="text/javascript"></script>
</head>
<body>
<h1 id="pose-estimation-through-rao-blackwellized-particle-filter.">POSE estimation through Rao-Blackwellized Particle filter.</h1>
<p>The use of the RPBF is justified because our state has some non-linear components (attitude). Indeed, rotations belong to <span class="math inline">\(SO(3)\)</span>. It can be shown intuitively that they do not belong to a vector space because the sum of two unit quaternions is not a unit quaternion (not closed under addition).</p>
<p>Compared to a plain PF, RPBF leverage the linearity of some components of the state by making our model linear conditionned on a latent variables.</p>
<h2 id="notes-on-notation-and-conventions">Notes on notation and conventions</h2>
<p>The referential by default is the fixed world frame.</p>
<ul>
<li><span class="math inline">\(\mathbf{x}\)</span> designates a vector</li>
<li><span class="math inline">\(x_t\)</span> is the random variable of x at time t</li>
<li><span class="math inline">\(x_{t1:t2}\)</span> is the product of the random variable of x between t1 included and t2 included</li>
<li><span class="math inline">\(x^{(i)}\)</span> designates the random variable x of the arbitrary particle i</li>
</ul>
<h2 id="rpbf">RPBF</h2>
<p>The aim of our filter is POSE. As such, we are interested in <span class="math display">\[\mathbb{E}[(\mathbf{p}_{0:t}, \mathbf{q}_{0:t}) | \mathbf{y}_{1:t}]\]</span></p>
<p>(There is no observation of the initial position)</p>
<p>Where <span class="math inline">\(p\)</span> is the position, <span class="math inline">\(q\)</span> is the attitude as a quaternion.</p>
<p>Optimal filters exist for linear models (Kalman filters). Unfortunately, as stated previously, the attitude component of our model is non-linear. However, given the attitude <span class="math inline">\(q\)</span>, we can make the assumption that our model is conditionally gaussian. This is where RPBF shines: We use particle filtering to estimate our latent variable, the attitude, and we use the optimal kalman filter to estimate the state variable.</p>
<p>We separate our variables in 3 kinds</p>
<ul>
<li>The state <span class="math inline">\(\mathbf{x}\)</span></li>
<li>The latent variable <span class="math inline">\(\boldsymbol{\theta}\)</span></li>
<li>The observable variable <span class="math inline">\(\mathbf{y}\)</span> composed of the sensor measurements <span class="math inline">\(\mathbf{z}\)</span> and the control input <span class="math inline">\(\mathbf{u}\)</span></li>
</ul>
<p>The state is what we are estimating, the measurements and the control inputs are the data we are estimating them from.</p>
<p>Particle filters are monte carlo methods which in their general form ... TODO</p>
<p>The latent variable <span class="math inline">\(\boldsymbol{\theta}\)</span> has for sole component the attitude: <span class="math display">\[\boldsymbol{\theta} = (\mathbf{q})\]</span></p>
<p><span class="math inline">\(q_t\)</span> is estimated from the product of the attitude of all particles <span class="math inline">\(\mathbf{\theta^{(i)}} = \mathbf{q}^{(i)}_t\)</span> as the "average" quaternion <span class="math inline">\(\mathbf{q}_t = avgQuat(\mathbf{q}^n_t)\)</span>. <span class="math inline">\(x^n\)</span> designates the product of all n arbitrary particle. The average quaternion is not simply the average of its components ... TODO</p>
<p>We use importance sampling ... TODO</p>
<p>The weight definition is:</p>
<p><span class="math display">\[w^{(i)}_t = \frac{p(\boldsymbol{\theta}^{(i)}_{0:t} | \mathbf{y}_{1:t})}{\pi(\boldsymbol{\theta}^{(i)}_{0:t} | \mathbf{y}_{1:t})}\]</span></p>
<p>From the definition, it is proovable that:</p>
<p><span class="math display">\[w^{(i)}_t \propto \frac{p(\mathbf{y}_t | \boldsymbol{\theta}^{(i)}_{0:t-1}, \mathbf{y}_{1:t-1})p(\boldsymbol{\theta}^{(i)}_t | \boldsymbol{\theta}^{(i)}_{t-1})}{\pi(\boldsymbol{\theta}^{(i)}_t | \boldsymbol{\theta}^{(i)}_{1:t-1}, \mathbf{y}_{1:t})} w^{(i)}_{t-1}\]</span></p>
<p>We choose the dynamic of the model as the importance distribution:</p>
<p><span class="math display">\[\pi(\boldsymbol{\theta}^{(i)}_t | \boldsymbol{\theta}^{(i)}_{1:t-1}, \mathbf{y}_{1:t}) = p(\boldsymbol{\theta}^{(i)}_t | \boldsymbol{\theta}^{(i)}_{t-1}) \]</span></p>
<p>Hence,</p>
<p><span class="math display">\[w^{(i)}_t \propto p(\mathbf{y}_t | \boldsymbol{\theta}^{(i)}_{0:t-1}, \mathbf{y}_{1:t-1}) w^{(i)}_{t-1}\]</span></p>
<p>We then need to sum all <span class="math inline">\(w^{(i)}_t\)</span> to get the normalization constant and retrieve the actual <span class="math inline">\(w^{(i)}_t\)</span></p>
<h2 id="state">State</h2>
<p><span class="math display">\[\mathbf{x_t} = (\mathbf{a_t}, \mathbf{v_t}, \mathbf{p_t})\]</span></p>
<ul>
<li><span class="math inline">\(\mathbf{a}\)</span> acceleration</li>
<li><span class="math inline">\(\mathbf{v}\)</span> velocity</li>
<li><span class="math inline">\(\mathbf{p}\)</span> position</li>
</ul>
<p>Initial position <span class="math inline">\(\mathbf{p_0}\)</span> at (0, 0, 0)</p>
<h2 id="observations">Observations</h2>
<p><span class="math display">\[\mathbf{y} = (\mathbf{aA}, \boldsymbol{\omega G}, \mathbf{pV}, \mathbf{qV}, tC, \boldsymbol{\omega C})\]</span></p>
<h3 id="measurements">Measurements</h3>
<ul>
<li><span class="math inline">\(\mathbf{aA}\)</span> acceleration from the accelerometer in the body frame</li>
<li><span class="math inline">\(\boldsymbol{\omega G}\)</span> angular velocity from the gyroscope in the body frame</li>
<li><span class="math inline">\(\mathbf{pV}\)</span> position from the vicon</li>
<li><span class="math inline">\(\mathbf{qV}\)</span> attitude from the vicon</li>
</ul>
<h3 id="control-inputs">Control Inputs</h3>
<ul>
<li><span class="math inline">\(tC\)</span> thrust (as a scalar) in the direction of the attitude from the control input.</li>
<li><span class="math inline">\(\boldsymbol{\omega C}\)</span> angular velocity in the body frame from the control input</li>
</ul>
<p>Observations from the control input are not strictly speaking measurements but input of the state-transition model</p>
<h2 id="latent-variable">Latent variable</h2>
<p><span class="math display">\[\mathbf{q}^{(i)}_{t+1} = \mathbf{q}^{(i)}_t*R2Q((\boldsymbol{\omega C}_t+\boldsymbol{ \omega C^\epsilon}_t)*dt)\]</span></p>
<p>where <span class="math inline">\(\boldsymbol{\omega C^\epsilon}_t\)</span> represents the error from the control input and is sampled from <span class="math inline">\(\boldsymbol{\omega C^\epsilon}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{R}_{\boldsymbol{\omega C}_t })\)</span></p>
<p>We introduce some helper functions.</p>
<ul>
<li><span class="math inline">\(B2F(\mathbf{q}, \mathbf{v})\)</span> is the body to fixed vector rotation. It transforms vector in the body frame to the fixed world frame. It takes as parameter the attitude <span class="math inline">\(q\)</span> and the vector <span class="math inline">\(v\)</span> to be rotated.</li>
<li><span class="math inline">\(F2B(\mathbf{q}, \mathbf{v})\)</span> is its inverse function (from fixed to body).</li>
<li><span class="math inline">\(T2A(t)\)</span> is the scaling from thrust to acceleration (by dividing by the weight of the drone: <span class="math inline">\(\mathbf{F} = m\mathbf{a} \Rightarrow \mathbf{a} = \mathbf{F}/m)\)</span> and then multiplying by a unit vector <span class="math inline">\((0, 0, 1)\)</span></li>
</ul>
<p>dt is the lapse of time between t and the next tick (t+1)</p>
<h2 id="model-dynamics">Model dynamics</h2>
<p><span class="math inline">\(\mathbf{w}_t\)</span> is our process noise (wind, etc ...)</p>
<ul>
<li><span class="math inline">\(\mathbf{a}(t+1) = B2F(\mathbf{q}(t+1), T2A(tC(t+1))) + \mathbf{w}_{\mathbf{a}_t}\)</span></li>
<li><span class="math inline">\(\mathbf{v}(t+1) = \mathbf{v}(t) + \mathbf{a}(t)*dt + \mathbf{w}_{\mathbf{v}_t}\)</span></li>
<li><span class="math inline">\(\mathbf{p}(t+1) = \mathbf{p}(t) + \mathbf{v}(t)*dt + \mathbf{w}_{\mathbf{p}_t}\)</span></li>
</ul>
<p>Note that <span class="math inline">\(\mathbf{q}(t+1)\)</span> is known because the model is conditionned under <span class="math inline">\(\boldsymbol{\theta}^{(i)}_{t+1}\)</span>.</p>
<p>The model dynamic define the state-transition matrix <span class="math inline">\(\mathbf{F}_t(\boldsymbol{\theta}^{(i)}_t)\)</span>, the control-input matrix <span class="math inline">\(\mathbf{B}_t(\boldsymbol{\theta}^{(i)}_t)\)</span> and the process noise <span class="math inline">\(\mathbf{w}_t(\boldsymbol{\theta}^{(i)}_t)\)</span> for the Kalman filter.</p>
<p>TODO: write the 3 matrices explicitely</p>
<h3 id="kalman-prediction">kalman prediction</h3>
<p><span class="math display">\[ \mathbf{m}^{-(i)}_t = \mathbf{F}_t(\boldsymbol{\theta}^{(i)}_t) \mathbf{m}^{(i)}_{t-1} + \mathbf{B}_t(\boldsymbol{\theta}^{(i)}_t) \mathbf{u}_t \]</span> <span class="math display">\[ \mathbf{P}^{-(i)}_t = \mathbf{F}_t(\boldsymbol{\theta}^{(i)}_t) \mathbf{P}^{-(i)}_{t-1} (\mathbf{F}_t(\boldsymbol{\theta}^{(i)}_t))^T + \mathbf{w}_t(\boldsymbol{\theta}^{(i)}_t)\]</span></p>
<h2 id="measurements-model">Measurements model</h2>
<p>The measurement model defines how to compute <span class="math inline">\(p(\mathbf{y}_t | \boldsymbol{\theta}{(i)}_{0:t-1}, \mathbf{y}_{1:t-1}) w^{(i)}_{t-1}\)</span></p>
<ul>
<li>Vicon:
<ol style="list-style-type: decimal">
<li><span class="math inline">\(\mathbf{p}(t) = \mathbf{pV}(t) + \mathbf{pV}^\epsilon_t\)</span> where <span class="math inline">\(\mathbf{pV}^\epsilon_t \sim \mathcal{N}(\mathbf{0}, \mathbf{R}_{\mathbf{pV}_t })\)</span></li>
<li><span class="math inline">\(\mathbf{q}(t) = \mathbf{qV}(t) + \mathbf{qV}^\epsilon_t\)</span> where <span class="math inline">\(\mathbf{qV}^\epsilon_t \sim \mathcal{N}(\mathbf{0}, \mathbf{R}_{\mathbf{qV}_t })\)</span></li>
</ol></li>
<li>Gyroscope:
<ol start="3" style="list-style-type: decimal">
<li><span class="math inline">\(\mathbf{q}(t) = \mathbf{q}(t-1) + (\boldsymbol{\omega G}(t) + \boldsymbol{\omega G}^\epsilon_t)*dt\)</span> where <span class="math inline">\(\boldsymbol{\omega G^\epsilon}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{R}_{\boldsymbol{\omega G}_t })\)</span></li>
</ol></li>
<li>Accelerometer:
<ol start="4" style="list-style-type: decimal">
<li><span class="math inline">\(\mathbf{a}(t) = B2F(\mathbf{q}(t), aA(t) + \mathbf{aA}^\epsilon_t)\)</span> where <span class="math inline">\(\mathbf{aA}^\epsilon_t \sim \mathcal{N}(\mathbf{0}, \mathbf{R}_{\mathbf{aA}_t })\)</span></li>
<li><span class="math inline">\(\mathbf{g}^f(t) = B2F(\mathbf{q}(t), \mathbf{aA}(t) + \mathbf{aA}^\epsilon_t) - \mathbf{a}(t)\)</span> where <span class="math inline">\(\mathbf{aA}^\epsilon_t \sim \mathcal{N}(\mathbf{0}, \mathbf{R}_{\mathbf{aA}_t })\)</span></li>
</ol></li>
</ul>
<p>(1, 2, 4) define the observation matrix <span class="math inline">\(\mathbf{H}_t(\boldsymbol{\theta}^{(i)}_t)\)</span> and the observation noise <span class="math inline">\(\mathbf{v}_t(\boldsymbol{\theta}^{(i)}_t)\)</span> for the Kalman filter.</p>
<p>TODO: write the 3 matrices explicitely</p>
<p><span class="math display">\[p(\mathbf{y}_t | \boldsymbol{\theta}^{(i)}_{0:t-1}, \mathbf{y}_{1:t-1}) = \mathcal{N}(\mathbf{z}^{(1, 2, 4)}_t; \mathbf{H}_t(\boldsymbol{\theta}^{(i)}_t) \mathbf{m}^{(i)}_t, \mathbf{H}_t(\boldsymbol{\theta}^{(i)}_t) \mathbf{P}^{-(i)}_t (\mathbf{H}_t(\boldsymbol{\theta}^{(i)}_t))^T + \mathbf{v}_t(\boldsymbol{\theta}^{(i)}_t))\]</span></p>
<p><span class="math inline">\(\mathbf{z}^{(1, 2, 4)}\)</span> means component 1, 2 and 4 of <span class="math inline">\(\mathbf{z}\)</span>.</p>
<h3 id="asynchronous-measurements">Asynchronous measurements</h3>
<p>Our measurements have different sampling rate so instead of doing full kalman update, we only apply a partial kalman update corresponding to the current type of measurement <span class="math inline">\(\mathbf{z}_t\)</span></p>
<h3 id="other-sources-or-reweighting">Other sources or reweighting</h3>
<p>(3 and 5) defines two other weight updates.</p>
<p><span class="math display">\[p(\mathbf{y}_t | \boldsymbol{\theta}^{(i)}_{0:t-1}, \mathbf{y}_{1:t-1}) = \mathcal{N}(\mathbf{z}^{(3)}_t; (\mathbf{q}^{(i)}_t - \mathbf{q}^{(i)}_{t-1})/dt, \mathbf{R}_{\boldsymbol{\omega G}_t})\]</span></p>
<p><span class="math display">\[p(\mathbf{y}_t | \boldsymbol{\theta}^{(i)}_{0:t-1}, \mathbf{y}_{1:t-1}) = \mathcal{N}(\mathbf{z}^{(5)}_t; F2B(\mathbf{q}^{(i)}_t, \mathbf{g}) + \mathbf{a}^{(i)}_t, \mathbf{R}_{\mathbf{aA}_t} + \mathbf{Pa}^{-(i)}_t)\]</span></p>
<p>TODO: Check that matrix of covariance is correct for 5. Found covariance as covariance of sum of normal but seems too simple.</p>
<p>where <span class="math inline">\(\mathbf{Pa}^{-(i)}_t\)</span> is the variance of <span class="math inline">\(\mathbf{a}\)</span> in <span class="math inline">\(\mathbf{P}^{-(i)}_t)\)</span> and <span class="math inline">\(\mathbf{g}\)</span> is the gravity vector.</p>
<h2 id="kalman-update">Kalman update</h2>
<p>TODO: plain kalman update matrix operations.</p>
<h2 id="resampling">Resampling</h2>
<p>When the number of effective particles is too low <span class="math inline">\((N/10)\)</span>, we apply systematic resampling</p>
<h2 id="pose">POSE</h2>
<p>At each timestep, we get <span class="math inline">\(p(t)\)</span> as the average <span class="math inline">\(p\)</span> from the state of all particles and <span class="math inline">\(q(t)\)</span> as the "average" quaternion (as defined previously) from the latent variable of all particles.</p>
</body>
</html>