-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsummary.py
170 lines (144 loc) · 6.33 KB
/
summary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# This code has been referenced from https://github.com/sksq96/pytorch-summary/blob/master/torchsummary/torchsummary.py
import torch
import torch.nn as nn
from torch.autograd import Variable
from collections import OrderedDict
import numpy as np
def summary(model, input_size, batch_size=-1, dtypes=None):
"""Display model summary.
Args:
model (torch.nn.Module): Model instance.
input_size (tuple, list or dict): Input size for the model.
batch_size (int, optional): Batch size. (default: -1)
dtypes (optional): Model input data types. (default: None)
"""
device = next(model.parameters()).device
result, _ = summary_string(
model, input_size, device, batch_size=batch_size, dtypes=dtypes
)
print(result)
def summary_string(model, input_size, device, batch_size=-1, dtypes=None):
"""Prepare model summary.
Args:
model (torch.nn.Module): Model instance.
input_size (tuple, list or dict): Input size for the model.
device (torch.device, optional): Device.
batch_size (int, optional): Batch size. (default: -1)
dtypes (optional): Model input data types. (default: None)
Returns:
Model summary and number of parameters in the model
"""
if dtypes == None:
dtypes = [torch.FloatTensor]*len(input_size)
summary_str = ''
def register_hook(module):
def hook(module, input, output):
class_name = str(module.__class__).split(".")[-1].split("'")[0]
module_idx = len(summary)
m_key = '%s-%i' % (class_name, module_idx + 1)
summary[m_key] = OrderedDict()
if isinstance(input[0], dict):
summary[m_key]['input_shape'] = [
[batch_size] + list(input[0][key].size())[1:] for key in input[0]
]
else:
summary[m_key]['input_shape'] = list(input[0].size())
summary[m_key]['input_shape'][0] = batch_size
if isinstance(output, (list, tuple)):
summary[m_key]['output_shape'] = [
[-1] + list(o.size())[1:] for o in output
]
elif isinstance(output, dict):
summary[m_key]['output_shape'] = [
[-1] + list(output[key].size())[1:] for key in
output.keys()
]
else:
summary[m_key]['output_shape'] = list(output.size())
summary[m_key]['output_shape'][0] = batch_size
params = 0
if hasattr(module, 'weight') and hasattr(module.weight, 'size'):
params += torch.prod(torch.LongTensor(list(module.weight.size())))
summary[m_key]['trainable'] = module.weight.requires_grad
if hasattr(module, 'bias') and hasattr(module.bias, 'size'):
params += torch.prod(torch.LongTensor(list(module.bias.size())))
summary[m_key]['nb_params'] = params
if (
not isinstance(module, nn.Sequential)
and not isinstance(module, nn.ModuleList)
):
hooks.append(module.register_forward_hook(hook))
# multiple inputs to the network
if isinstance(input_size, tuple):
input_size = [input_size]
# batch_size of 2 for batchnorm
if isinstance(input_size, dict): # Inputs to the model are passed as a dict
x = {
in_size: torch.rand(
2, *input_size[in_size]).type(dtype).to(device=device)
for in_size, dtype in zip(input_size, dtypes)
}
else: # Inputs to the model are passed as a list
x = [
torch.rand(2, *in_size).type(dtype).to(device=device)
for in_size, dtype in zip(input_size, dtypes)
]
# create properties
summary = OrderedDict()
hooks = []
# register hook
model.apply(register_hook)
# make a forward pass
if isinstance(x, dict):
model(x)
else:
model(*x)
# remove these hooks
for h in hooks:
h.remove()
summary_str += '----------------------------------------------------------------' + '\n'
line_new = f'{"Layer (type)":>20} {"Output Shape":>25} {"Param #":>15}'
summary_str += line_new + '\n'
summary_str += '================================================================' + '\n'
total_params = 0
total_output = 0
trainable_params = 0
for layer in summary:
# input_shape, output_shape, trainable, nb_params
output_shape = summary[layer]['output_shape']
nb_params = summary[layer]['nb_params']
line_new = f'{layer:>20} {str(output_shape):>25} {f"{nb_params:,}":>15}'
total_params += nb_params
total_output += np.prod(output_shape)
if 'trainable' in summary[layer]:
if summary[layer]['trainable'] == True:
trainable_params += nb_params
summary_str += line_new + '\n'
# assume 4 bytes/number (float on cuda).
if isinstance(input_size, dict):
total_input_size = abs(
np.prod(sum(
[input_size[key] for key in input_size], ()
)) * batch_size * 4. / (1024 ** 2.)
)
else:
total_input_size = abs(
np.prod(sum(input_size, ())) * batch_size * 4. / (1024 ** 2.)
)
total_output_size = abs(
2. * total_output * 4. / (1024 ** 2.)
) # x2 for gradients
total_params_size = abs(total_params * 4. / (1024 ** 2.))
total_size = total_params_size + total_output_size + total_input_size
summary_str += '================================================================' + '\n'
summary_str += f'Total params: {total_params:,}\n'
summary_str += f'Trainable params: {trainable_params:,}\n'
summary_str += f'Non-trainable params: {total_params - trainable_params:,}\n'
summary_str += '----------------------------------------------------------------' + '\n'
summary_str += 'Input size (MB): %0.2f' % total_input_size + '\n'
summary_str += 'Forward/backward pass size (MB): %0.2f' % total_output_size + '\n'
summary_str += 'Params size (MB): %0.2f' % total_params_size + '\n'
summary_str += 'Estimated Total Size (MB): %0.2f' % total_size + '\n'
summary_str += '----------------------------------------------------------------' + '\n'
# return summary
return summary_str, (total_params, trainable_params)