-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
66 lines (58 loc) · 1.96 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from config import MODEL_NAME
from project.lit_qa import QADataModule, QAMixModel, XLMRobertaQAMixModel
# MODEL_NAME = "bert-base-multilingual-cased"
# MODEL_NAME = "xlm-roberta-base"
def print_params():
model = QAMixModel.load_from_checkpoint(
"model/mbert/squad_drcd_mix/qamix-epoch=00.ckpt",
hf_path=MODEL_NAME,
)
from torchinfo import summary
summary(model)
# f"model/mbert/squad_drcd_mix/qamix-epoch={i:02d}.ckpt"
# f"model/xlm/squad_drcd_mix_bak/qamix-epoch={i:02d}.ckpt"
# f"model/xlm/squad_drcd_mix/qamix-epoch={i:02d}.ckpt"
def evaluate():
dm = QADataModule()
trainer = Trainer(
gpus=1,
# strategy="ddp"
)
for i in range(30):
ckpt_path = f"model/mbert/squad_drcd_mix/qamix-epoch={i:02d}.ckpt"
# QAMixModel
# XLMRobertaQAMixModel
model = QAMixModel.load_from_checkpoint(
ckpt_path,
hf_path=MODEL_NAME,
eval_examples=dm.val_examples(),
eval_dataset=dm.val_dataset(),
epoch=f"{i:02d}",
)
trainer.validate(model, dm.val_dataloader())
def main():
callbacks = [
ModelCheckpoint(
dirpath="model/xlm/squad_drcd_mix",
filename="qamix-{epoch:02d}",
save_top_k=-1,
)
]
trainer = Trainer(
gpus=-1,
max_epochs=30,
callbacks=callbacks,
strategy="ddp"
)
dm = QADataModule()
mix_model = XLMRobertaQAMixModel(hf_path=MODEL_NAME, eval_examples=dm.val_examples(), eval_dataset=dm.val_dataset())
trainer.fit(mix_model, datamodule=dm, ckpt_path="/user_data/unans_qa/model/xlm/squad_drcd_mix_bak/qamix-epoch=09.ckpt")
# trainer.validate(mix_model, datamodule=dm)
# trainer.save_checkpoint("finetuned_squad/squad_mix.ckpt")
if __name__ == "__main__":
# main()
# print_params()
evaluate()
# print_params()