@@ -123,7 +123,7 @@ def time_bin(time, flux, dt=1./(60*24)):
123
123
if mask .sum () > 0 :
124
124
bflux [i ] = np .nanmean (flux [mask ])
125
125
btime [i ] = np .nanmean (time [mask ])
126
- bstds [i ] = np .nanstd (flux [mask ])/ (1 + mask .sum ()) ** 0.5
126
+ bstds [i ] = np .nanstd (flux [mask ])/ (mask .sum ()** 0.5 )
127
127
zmask = (bflux == 0 ) | (btime == 0 ) | np .isnan (bflux ) | np .isnan (btime )
128
128
return btime [~ zmask ], bflux [~ zmask ], bstds [~ zmask ]
129
129
@@ -223,10 +223,12 @@ def lc2min_airmass(pars):
223
223
def create_fit_variables (self ):
224
224
self .phase = get_phase (self .time , self .parameters ['per' ], self .parameters ['tmid' ])
225
225
self .transit = transit (self .time , self .parameters )
226
+ self .time_upsample = np .linspace (min (self .time ), max (self .time ),1000 )
227
+ self .transit_upsample = transit (self .time_upsample , self .parameters )
228
+ self .phase_upsample = get_phase (self .time_upsample , self .parameters ['per' ], self .parameters ['tmid' ])
226
229
if self .mode == "ns" :
227
230
self .parameters ['a1' ], self .errors ['a1' ] = mc_a1 (self .parameters .get ('a2' ,0 ), self .errors .get ('a2' ,1e-6 ),
228
231
self .transit , self .airmass , self .data )
229
-
230
232
if np .ndim (self .airmass ) == 2 :
231
233
detrended = self .data / self .transit
232
234
self .wf = weightedflux (detrended , self .gw , self .nearest )
@@ -409,7 +411,9 @@ def plot_bestfit(self, title="", bin_dt=30./(60*24), zoom=False, phase=True):
409
411
si = np .argsort (self .phase )
410
412
bt2 , bf2 , bs = time_bin (self .phase [si ]* self .parameters ['per' ], self .detrended [si ], bin_dt )
411
413
axs [0 ].errorbar (bt2 / self .parameters ['per' ],bf2 ,yerr = bs ,alpha = 1 ,zorder = 2 ,color = 'blue' ,ls = 'none' ,marker = 's' )
412
- axs [0 ].plot (self .phase [si ], self .transit [si ], 'r-' , zorder = 3 , label = lclabel )
414
+ #axs[0].plot(self.phase[si], self.transit[si], 'r-', zorder=3, label=lclabel)
415
+ sii = np .argsort (self .phase_upsample )
416
+ axs [0 ].plot (self .phase_upsample [sii ], self .transit_upsample [sii ], 'r-' , zorder = 3 , label = lclabel )
413
417
axs [0 ].set_xlim ([min (self .phase ), max (self .phase )])
414
418
axs [0 ].set_xlabel ("Phase " , fontsize = 14 )
415
419
else :
@@ -421,8 +425,9 @@ def plot_bestfit(self, title="", bin_dt=30./(60*24), zoom=False, phase=True):
421
425
422
426
bt , bf , bs = time_bin (self .time , self .detrended , bin_dt )
423
427
si = np .argsort (self .time )
428
+ sii = np .argsort (self .time_upsample )
424
429
axs [0 ].errorbar (bt ,bf ,yerr = bs ,alpha = 1 ,zorder = 2 ,color = 'blue' ,ls = 'none' ,marker = 's' )
425
- axs [0 ].plot (self .time [ si ], self .transit [ si ], 'r-' , zorder = 3 , label = lclabel )
430
+ axs [0 ].plot (self .time_upsample [ sii ], self .transit_upsample [ sii ], 'r-' , zorder = 3 , label = lclabel )
426
431
axs [0 ].set_xlim ([min (self .time ), max (self .time )])
427
432
axs [0 ].set_xlabel ("Time [day]" , fontsize = 14 )
428
433
0 commit comments