From 04a937533437655731ca0b99a05da8a72b11821b Mon Sep 17 00:00:00 2001 From: jonalfcam Date: Sun, 15 Oct 2023 07:42:15 -0700 Subject: [PATCH] minor edits to the utilities --- src/hott/04-half-adjoint-equivalences.rzk.md | 53 ++++++++++++-------- 1 file changed, 32 insertions(+), 21 deletions(-) diff --git a/src/hott/04-half-adjoint-equivalences.rzk.md b/src/hott/04-half-adjoint-equivalences.rzk.md index e8489163..ba17132d 100644 --- a/src/hott/04-half-adjoint-equivalences.rzk.md +++ b/src/hott/04-half-adjoint-equivalences.rzk.md @@ -807,6 +807,9 @@ have equivalent identity types by showing that equivalences are embeddings. ## Some further useful coherences +We prove some further coherences from half-adjoint equivalences. Some of the +lemmas below resemble lemmas from the section on embeddings. + For a half-adjoint equivalence $f$ with inverse $g$ and coherence $G ⋅ f ∼ \text{ap}_f ⋅ H$ we show @@ -878,13 +881,26 @@ reversals. ( ((coherence-is-half-adjoint-equiv A B f is-hae) a))) ``` -Let $f : A → B$ be an equivalence between $A$ and $B$. We prove the somewhat -delicate statement that +Let $f : A → B$ be an equivalence between $A$ and $B$. We prove that + +$$ +\text{ap}_f (H^-1 (a)) ⋅ \text{ap}_{f ∘ g} (q) ⋅ G (b) = q +$$ + +This expresses a relatively natural statement that if we start with +$q: f (a) = b$, apply $g$ to get $\text{ap}_g (q) : g (f (a)) = g(b)$, +precompose with $H (a)$ to get $$ -q = \text{ap}_f (H^-1 (a)) ⋅ \text{ap}_{f ∘ g} (q) ⋅ G (b) +a = g(f(a)) = g(b) $$ +apply $g$ and then postcompose with $G : f (g (b)) = b$, the resulting path +$f(a) = b$ is equal to $q$. + +An alternate proof could use `triple-concat-eq-first` and +`triple-concat-nat-htpy`. The proofs do not end up much shorter. + ```rzk #def id-conjugate-is-hae-ap-ap-is-hae ( A B : U) @@ -893,8 +909,7 @@ $$ ( b : B) ( q : (f a) = b) (is-hae : is-half-adjoint-equiv A B f) - : q = - (concat ( B) + :(concat ( B) ( f a) ( f ((map-inverse-is-half-adjoint-equiv A B f is-hae) (b))) ( b ) @@ -912,12 +927,10 @@ $$ ( ap ( B) ( B) ( f a) ( b) ( \z → (f ((map-inverse-is-half-adjoint-equiv A B f is-hae) z))) ( q))) - ( ( section-htpy-is-half-adjoint-equiv A B f is-hae) (b))) + ( ( section-htpy-is-half-adjoint-equiv A B f is-hae) (b))) = q := concat ((f a) = b) - ( q) -- start - ((ap B B (f a) b (identity B) q)) -- middle ((concat ( B) ( f a) ( f ((map-inverse-is-half-adjoint-equiv A B f is-hae) (b))) @@ -936,18 +949,15 @@ $$ ( ap ( B) ( B) ( f a) ( b) ( \z → (f ((map-inverse-is-half-adjoint-equiv A B f is-hae) z))) ( q))) - ( ( section-htpy-is-half-adjoint-equiv A B f is-hae) (b))) ) -- end - (rev - (f a = b) - ( ap B B (f a) b (identity B) q) - ( q) - (ap-id B (f a) b q ))-- path 1 - (eq-top-cancel-commutative-square' + ( ( section-htpy-is-half-adjoint-equiv A B f is-hae) (b))) ) + ((ap B B (f a) b (identity B) q)) + ( q) + (rev-eq-top-cancel-commutative-square' ( B) (f a) - ( f ((map-inverse-is-half-adjoint-equiv A B f is-hae) (f a))) --w - ( f ((map-inverse-is-half-adjoint-equiv A B f is-hae) b)) --y - ( b) -- z + ( f ((map-inverse-is-half-adjoint-equiv A B f is-hae) (f a))) + ( f ((map-inverse-is-half-adjoint-equiv A B f is-hae) b)) + ( b) (ap ( A) ( B) ( a) ( (map-inverse-is-half-adjoint-equiv A B f is-hae) (f a)) @@ -956,12 +966,12 @@ $$ ( (map-inverse-is-half-adjoint-equiv A B f is-hae) (f a)) ( a) ( (retraction-htpy-is-half-adjoint-equiv A B f is-hae) a))) - ((section-htpy-is-half-adjoint-equiv A B f is-hae) (f a)) -- q + ((section-htpy-is-half-adjoint-equiv A B f is-hae) (f a)) (ap ( B) ( B) ( f a) ( b) (\z → (f ((map-inverse-is-half-adjoint-equiv A B f is-hae) z))) ( q))-- s - ( ap B B (f a) b (identity B) q ) --- r - ( (section-htpy-is-half-adjoint-equiv A B f is-hae) b) --- t + ( ap B B (f a) b (identity B) q ) + ( (section-htpy-is-half-adjoint-equiv A B f is-hae) b) (rev-nat-htpy ( B) ( B) ( \ x → f ((map-inverse-is-half-adjoint-equiv A B f is-hae) (x))) ( identity B) @@ -970,4 +980,5 @@ $$ ( b) ( q)) ( ap-rev-retr-htpy-concat-sec-htpy-is-refl-is-hae A B f a b q is-hae)) + (ap-id B (f a) b q ) ```