From 053b314478e4802c55885f4fe8e89a570c890eef Mon Sep 17 00:00:00 2001 From: cesarbm03 Date: Tue, 3 Oct 2023 15:00:48 -0400 Subject: [PATCH] Another definition of limit --- src/simplicial-hott/13-limits.rzk.md | 90 +++++++++++++++------------- 1 file changed, 49 insertions(+), 41 deletions(-) diff --git a/src/simplicial-hott/13-limits.rzk.md b/src/simplicial-hott/13-limits.rzk.md index 400826a0..163c49b4 100644 --- a/src/simplicial-hott/13-limits.rzk.md +++ b/src/simplicial-hott/13-limits.rzk.md @@ -21,6 +21,37 @@ over `#!rzk f`. := Σ (b : B), hom (A → B) (constant A B b) f ``` +Given a function `#!rzk f : A → B` and `#!rzk b:B` we define the type of cocones +under `#!rzk f`. + +```rzk +#def cocone + ( A B : U ) + ( f : A → B ) + : U + := Σ (b : B), hom ( A → B) f (constant A B b) +``` +We define a colimit for `#!rzk f : A → B` as an initial cocone under `#!rzk f`. + +```rzk +#def colimit + ( A B : U ) + ( f : A → B ) + : U + := Σ ( x : cocone A B f ) , is-initial (cocone A B f) x +``` + +We define a limit of `#!rzk f : A → B` as a terminal cone over `#!rzk f`. + +```rzk +#def limit + ( A B : U ) + ( f : A → B ) + : U + := Σ ( x : cone A B f ) , is-final (cone A B f) x +``` +We give a second definition, we eventually want to prove that they coincide. +Define cone as a family. ```rzk #def cone2 (A B : U) @@ -28,7 +59,7 @@ over `#!rzk f`. := \ f → \ b → (hom (A → B) (constant A B b) f) ``` ```rzk -#def constant-nat-trans-components +#def constant-nat-trans (A B : U) ( x y : B ) ( k : hom B x y) @@ -36,62 +67,39 @@ over `#!rzk f`. := \ t a → ( constant A ( hom B x y ) k ) a t ``` - - ```rzk #def cone-precomposition ( A B : U) ( is-segal-B : is-segal B) ( f : A → B ) ( b x : B ) - : (cone2 A B f x) → (hom B b x) → (cone2 A B f b) - := \ α k → vertical-comp-nat-trans + ( k : hom B b x) + : (cone2 A B f x) → (cone2 A B f b) + := \ α → vertical-comp-nat-trans ( A) - ( \ a → B ) - ( \ a → is-segal-B ) + ( \ a → B) + ( \ a → is-segal-B) ( constant A B b) ( constant A B x) - ( \ a → \ t → constant-nat-trans A B b x k a t) + (f) + ( constant-nat-trans A B b x k ) ( α) ``` - -Given a function `#!rzk f : A → B` and `#!rzk b:B` we define the type of cocones -under `#!rzk f`. - -```rzk -#def cocone - ( A B : U ) - ( f : A → B ) - : U - := Σ (b : B), hom ( A → B) f (constant A B b) -``` - -```rzk -#def cocone2 - (A B : U) - : (f : A → B) → (b : B) → U - := \ f → \ b → (hom ( A → B) f (constant A B b)) -``` - -We define a colimit for `#!rzk f : A → B` as an initial cocone under `#!rzk f`. +Another definition of limit. ```rzk -#def colimit - ( A B : U ) - ( f : A → B ) +#def limit2 + ( A B : U) + ( is-segal-B : is-segal B) + ( f : A → B) + ( is-segal-B : is-segal B) : U - := Σ ( x : cocone A B f ) , is-initial (cocone A B f) x + := Σ (b : B), + Σ ( c : cone2 A B f b ), + ( x : B) → ( k : hom B b x) + → is-equiv (cone2 A B f x) (cone2 A B f b) (cone-precomposition A B is-segal-B f b x k ) ``` -We define a limit of `#!rzk f : A → B` as a terminal cone over `#!rzk f`. - -```rzk -#def limit - ( A B : U ) - ( f : A → B ) - : U - := Σ ( x : cone A B f ) , is-final (cone A B f) x -``` ## Uniqueness of initial and final objects.