From 8996f347bca29dad60d60dbc11231817fb390200 Mon Sep 17 00:00:00 2001 From: Robin Carlier <57142648+robin-carlier@users.noreply.github.com> Date: Tue, 1 Oct 2024 09:27:23 +0200 Subject: [PATCH] Formatting, name --- src/simplicial-hott/09-yoneda.rzk.md | 24 ++++++++++++------------ 1 file changed, 12 insertions(+), 12 deletions(-) diff --git a/src/simplicial-hott/09-yoneda.rzk.md b/src/simplicial-hott/09-yoneda.rzk.md index 50e0e68..a5fa208 100644 --- a/src/simplicial-hott/09-yoneda.rzk.md +++ b/src/simplicial-hott/09-yoneda.rzk.md @@ -1415,7 +1415,7 @@ the total space of the family is equivalent to a coslice, and coslices have an initial object by `#!rzk is-initial-id-hom-is-segal`. ```rzk -#def has-initial-tot-is-representable-family-is-segal uses (extext) +#def has-initial-tot-is-representable-family uses (extext) ( A : U) ( is-segal-A : is-segal A) ( C : A → U) @@ -1467,7 +1467,7 @@ equivalence using `#!rzk is-equiv-is-contr-map`. ( first (first has-initial-tot-A)) ( C) ( is-covariant-C) - ( second(first has-initial-tot-A)) + ( second (first has-initial-tot-A)) ( b)) , is-equiv-is-contr-map ( hom A (first (first has-initial-tot-A)) b) @@ -1478,7 +1478,7 @@ equivalence using `#!rzk is-equiv-is-contr-map`. ( first (first has-initial-tot-A)) ( C) ( is-covariant-C) - ( second(first has-initial-tot-A)) + ( second (first has-initial-tot-A)) ( b)) ( \ v → is-contr-equiv-is-contr @@ -1492,7 +1492,7 @@ equivalence using `#!rzk is-equiv-is-contr-map`. ( first (first has-initial-tot-A)) ( C) ( is-covariant-C) - ( second(first has-initial-tot-A)) + ( second (first has-initial-tot-A)) ( b)) ( v)) ( equiv-comp @@ -1504,7 +1504,7 @@ equivalence using `#!rzk is-equiv-is-contr-map`. ( b) ( f) ( C) - ( second(first has-initial-tot-A)) + ( second (first has-initial-tot-A)) ( v)) ( fib ( hom A (first (first has-initial-tot-A)) b) @@ -1515,7 +1515,7 @@ equivalence using `#!rzk is-equiv-is-contr-map`. ( first (first has-initial-tot-A)) ( C) ( is-covariant-C) - ( second(first has-initial-tot-A)) + ( second (first has-initial-tot-A)) ( b)) ( v)) ( axiom-choice @@ -1530,7 +1530,7 @@ equivalence using `#!rzk is-equiv-is-contr-map`. , t ≡ 1₂ ↦ b)) ( \ t → recOR - ( t ≡ 0₂ ↦ second(first has-initial-tot-A) + ( t ≡ 0₂ ↦ second (first has-initial-tot-A) , t ≡ 1₂ ↦ v))) ( total-equiv-family-of-equiv ( hom A (first (first has-initial-tot-A)) b) @@ -1541,7 +1541,7 @@ equivalence using `#!rzk is-equiv-is-contr-map`. ( b) ( f) ( C) - ( second(first has-initial-tot-A)) + ( second (first has-initial-tot-A)) ( v)) ( \ f → covariant-transport @@ -1551,7 +1551,7 @@ equivalence using `#!rzk is-equiv-is-contr-map`. ( f) ( C) ( is-covariant-C) - ( second(first has-initial-tot-A)) + ( second (first has-initial-tot-A)) = v) ( \ f → ( covariant-uniqueness-curried @@ -1561,7 +1561,7 @@ equivalence using `#!rzk is-equiv-is-contr-map`. ( f) ( C) ( is-covariant-C) - ( second(first has-initial-tot-A)) + ( second (first has-initial-tot-A)) ( v) , is-equiv-covariant-uniqueness-curried ( A) @@ -1570,7 +1570,7 @@ equivalence using `#!rzk is-equiv-is-contr-map`. ( f) ( C) ( is-covariant-C) - ( second(first has-initial-tot-A)) + ( second (first has-initial-tot-A)) ( v))))) ( second has-initial-tot-A (b , v))))) ``` @@ -1584,7 +1584,7 @@ equivalence using `#!rzk is-equiv-is-contr-map`. : iff (is-representable-family A C) (has-initial-tot A C) := ( \ is-rep-C → - has-initial-tot-is-representable-family-is-segal + has-initial-tot-is-representable-family ( A) ( is-segal-A) ( C)