From 928908e5203a855c71350cdcdf6c6de704658e9a Mon Sep 17 00:00:00 2001 From: cesarbm03 Date: Tue, 3 Oct 2023 15:26:54 -0400 Subject: [PATCH] Another definition of colimit --- src/simplicial-hott/13-limits.rzk.md | 46 +++++++++++++++++++++++++++- 1 file changed, 45 insertions(+), 1 deletion(-) diff --git a/src/simplicial-hott/13-limits.rzk.md b/src/simplicial-hott/13-limits.rzk.md index 163c49b4..708a532f 100644 --- a/src/simplicial-hott/13-limits.rzk.md +++ b/src/simplicial-hott/13-limits.rzk.md @@ -50,8 +50,9 @@ We define a limit of `#!rzk f : A → B` as a terminal cone over `#!rzk f`. : U := Σ ( x : cone A B f ) , is-final (cone A B f) x ``` -We give a second definition, we eventually want to prove that they coincide. +We give a second definition of limits, we eventually want to prove both definitions coincide. Define cone as a family. + ```rzk #def cone2 (A B : U) @@ -100,6 +101,49 @@ Another definition of limit. → is-equiv (cone2 A B f x) (cone2 A B f b) (cone-precomposition A B is-segal-B f b x k ) ``` +We give a second definition of colimits, we eventually want to prove both definitions coincide. +Define cocone as a family. + +```rzk +#def cocone2 + (A B : U) + : (A → B) → (B) → U + := \ f → \ b → (hom (A → B) f (constant A B b)) +``` + +```rzk +#def cocone-postcomposition + ( A B : U) + ( is-segal-B : is-segal B) + ( f : A → B ) + ( x b : B ) + ( k : hom B x b) + : (cocone2 A B f x) → (cocone2 A B f b) + := \ α → vertical-comp-nat-trans + ( A) + ( \ a → B) + ( \ a → is-segal-B) + (f) + ( constant A B x) + ( constant A B b) + ( α) + ( constant-nat-trans A B x b k ) +``` +Another definition of colimit. + +```rzk +#def colimit2 + ( A B : U) + ( is-segal-B : is-segal B) + ( f : A → B) + ( is-segal-B : is-segal B) + : U + := Σ (b : B), + Σ ( c : cocone2 A B f b ), + ( x : B) → ( k : hom B x b) + → is-equiv (cocone2 A B f x) (cocone2 A B f b) (cocone-postcomposition A B is-segal-B f x b k ) +``` + ## Uniqueness of initial and final objects.