From 3098910b634e195879af8d04c39d274df97c552c Mon Sep 17 00:00:00 2001 From: Tashi Walde Date: Sat, 14 Oct 2023 21:17:49 +0200 Subject: [PATCH 1/2] fibers between segal types --- src/simplicial-hott/05-segal-types.rzk.md | 48 ++++++++++++++++++++++- 1 file changed, 47 insertions(+), 1 deletion(-) diff --git a/src/simplicial-hott/05-segal-types.rzk.md b/src/simplicial-hott/05-segal-types.rzk.md index ed74e32c..b8019dc9 100644 --- a/src/simplicial-hott/05-segal-types.rzk.md +++ b/src/simplicial-hott/05-segal-types.rzk.md @@ -417,7 +417,7 @@ for the inclusion `Λ ⊂ Δ¹`. : U → U := is-local-type (2 × 2) Δ² (\ t → Λ t) -#def is-local-horn-inclusion-unpacked +#def unpack-is-local-horn-inclusion ( A : U) : is-local-horn-inclusion A = is-equiv (Δ² → A) (Λ → A) (horn-restriction A) := refl @@ -570,6 +570,28 @@ We have now proven that both notions of Segal types are logically equivalent. := (is-local-horn-inclusion-is-segal A , is-segal-is-local-horn-inclusion A) ``` +Similarly, Segal types are characterized by having unique extensions along +`Λ ⊂ Δ²`. + +```rzk +#def is-segal-has-unique-inner-extensions + ( A : U) + ( has-inner-ue-A : has-unique-extensions (2 × 2) (Δ²) (\ t → Λ t) A) + : is-segal A + := + is-segal-is-local-horn-inclusion A + ( is-local-type-has-unique-extensions (2 × 2) (Δ²) (\ t → Λ t) A + has-inner-ue-A) + +#def has-unique-inner-extensions-is-segal + ( A : U) + ( is-segal-A : is-segal A) + : has-unique-extensions (2 × 2) (Δ²) (\ t → Λ t) A + := + has-unique-extensions-is-local-type (2 × 2) (Δ²) (\ t → Λ t) A + ( is-local-horn-inclusion-is-segal A is-segal-A) +``` + ## Segal function and extension types Using the new characterization of Segal types, we can show that the type of @@ -1866,3 +1888,27 @@ products of morphisms. It is implicitly stated in Proposition 8.21. #end morphisms-of-products-is-products-of-morphisms ``` + +## Fibers of maps between Segal types + +For any map `f : A → B` between Segal types, each fiber `fib A B f b` is again a +Segal type. This is an instance of a general statement about types with unique +extensions for the shape inclusion `Λ ⊂ Δ²`. + +```rzk +#def is-fiberwise-segal-are-segal + ( A B : U) + ( f : A → B) + ( is-segal-A : is-segal A) + ( is-segal-B : is-segal B) + ( b : B) + : is-segal (fib A B f b) + := + is-segal-has-unique-inner-extensions (fib A B f b) + ( has-fiberwise-unique-extensions-have-unique-extensions + extext weakextext + ( 2 × 2) (Δ²) (\ t → Λ t) A B f + ( has-unique-inner-extensions-is-segal A is-segal-A) + ( has-unique-inner-extensions-is-segal B is-segal-B) + ( b)) +``` From b84295ef3cce02adf13e837ecf908e355ff40113 Mon Sep 17 00:00:00 2001 From: Tashi Walde Date: Sat, 14 Oct 2023 21:20:26 +0200 Subject: [PATCH 2/2] make usage of extext explicit --- src/simplicial-hott/05-segal-types.rzk.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/simplicial-hott/05-segal-types.rzk.md b/src/simplicial-hott/05-segal-types.rzk.md index b8019dc9..0ad043a6 100644 --- a/src/simplicial-hott/05-segal-types.rzk.md +++ b/src/simplicial-hott/05-segal-types.rzk.md @@ -1896,7 +1896,7 @@ Segal type. This is an instance of a general statement about types with unique extensions for the shape inclusion `Λ ⊂ Δ²`. ```rzk -#def is-fiberwise-segal-are-segal +#def is-fiberwise-segal-are-segal uses (extext weakextext) ( A B : U) ( f : A → B) ( is-segal-A : is-segal A)