diff --git a/src/simplicial-hott/13-limits.rzk.md b/src/simplicial-hott/13-limits.rzk.md index fffe87f5..400826a0 100644 --- a/src/simplicial-hott/13-limits.rzk.md +++ b/src/simplicial-hott/13-limits.rzk.md @@ -28,19 +28,31 @@ over `#!rzk f`. := \ f → \ b → (hom (A → B) (constant A B b) f) ``` ```rzk -#def constant-natural-transformation +#def constant-nat-trans-components (A B : U) - : B → B → U - := \ x → \ y → (hom (A → B) (constant A B x) (constant A B x)) + ( x y : B ) + ( k : hom B x y) + : hom (A → B) (constant A B x) (constant A B y) + := \ t a → ( constant A ( hom B x y ) k ) a t ``` + + ```rzk #def cone-precomposition - (A B : U) + ( A B : U) + ( is-segal-B : is-segal B) ( f : A → B ) ( b x : B ) : (cone2 A B f x) → (hom B b x) → (cone2 A B f b) - := \ α k → compose α k + := \ α k → vertical-comp-nat-trans + ( A) + ( \ a → B ) + ( \ a → is-segal-B ) + ( constant A B b) + ( constant A B x) + ( \ a → \ t → constant-nat-trans A B b x k a t) + ( α) ``` Given a function `#!rzk f : A → B` and `#!rzk b:B` we define the type of cocones