-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathamazon.py
147 lines (129 loc) · 5.09 KB
/
amazon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
import tensorflow as tf
import pandas as pd
from langdetect import detect
from sklearn.model_selection import train_test_split
from pathlib import Path
import numpy as np
from conversion import convert_examples_to_features, convert_text_to_examples
def my_detect(s):
try:
lang = detect(s)
except:
lang = "na"
return lang
def sentiment(stars, polarized):
if polarized:
if stars == 1:
sent = 0
elif stars == 5:
sent = 1
else:
sent = 2
else:
if stars < 3:
sent = 0
elif stars == 3:
sent = 2
else:
sent = 1
return sent
def download_dataset(data_dir):
fn = os.path.join(data_dir, "reviews.csv")
if os.path.isfile(fn):
data = pd.read_csv(fn, index_col=0)
else:
dataset = tf.keras.utils.get_file(
fname="amazon_reviews_multilingual_DE_v1_00.tsv.gz",
origin="https://s3.amazonaws.com/amazon-reviews-pds/tsv/amazon_reviews_multilingual_DE_v1_00.tsv.gz",
extract=True
)
data = pd.read_csv(dataset, sep="\t")[["review_body", "star_rating"]] # only need these two columns
data["language"] = data.apply(lambda row: my_detect(row.review_body), axis=1) # detect language; some reviews are in English
data = data[data.language=='de'] # only keep German reviews
data = data.drop_duplicates(subset='review_body') # drop duplicate reviews
data = data[["review_body", "star_rating"]] # drop language column
if not os.path.exists(data_dir):
os.makedirs(data_dir)
data.to_csv(fn)
return data
def load_datasets(data_dir, test_size, num_categories, polarized):
data = download_dataset(data_dir)
data['sentiment'] = data.apply(lambda row: sentiment(row.star_rating, polarized), axis=1)
if num_categories == 2:
data = data[np.logical_or(data.star_rating==1, data.star_rating==5)]
grouped = data.groupby('sentiment')
sample = grouped.apply(lambda group: group.sample(min(grouped.size()), random_state=0))
sample.reset_index(drop=True)
if not os.path.exists(data_dir):
os.makedirs(data_dir)
sample.to_csv(os.path.join(data_dir, "sample.csv"))
X = sample['review_body']
y = sample['sentiment']
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=test_size, random_state=0)
return (X_train, y_train, X_test, y_test)
def get_reviews_data(data_dir, subtask, num_categories, tokenizer, max_seq_length, test_size, polarized):
fn = os.path.join(data_dir, "data_"+subtask+"_"+str(num_categories)+"cat_"+str(max_seq_length)+("_pol" if polarized else "")+".npz")
if Path(fn).is_file():
f= np.load(fn)
train_input_ids = f['train_input_ids']
train_input_masks = f['train_input_masks']
train_segment_ids = f['train_segment_ids']
train_labels = f['train_labels']
test_input_ids = f['test_input_ids']
test_input_masks = f['test_input_masks']
test_segment_ids = f['test_segment_ids']
test_labels = f['test_labels']
f.close()
else:
X_train, y_train, X_test, y_test = load_datasets(data_dir, test_size, num_categories, polarized)
# Create datasets (Only take up to max_seq_length words for memory)
train_text = X_train.to_list()
train_text = [" ".join(t.split()[0:max_seq_length]) for t in train_text]
train_text = np.array(train_text, dtype=object)[:, np.newaxis]
train_label = y_train.tolist()
test_text = X_test.tolist()
test_text = [" ".join(t.split()[0:max_seq_length]) for t in test_text]
test_text = np.array(test_text, dtype=object)[:, np.newaxis]
test_label = y_test.tolist()
# Convert data to InputExample format
train_examples = convert_text_to_examples(train_text, train_label)
test_examples = convert_text_to_examples(test_text, test_label)
# Convert to features
(
train_input_ids,
train_input_masks,
train_segment_ids,
train_labels,
) = convert_examples_to_features(
tokenizer, train_examples, max_seq_length=max_seq_length
)
(
test_input_ids,
test_input_masks,
test_segment_ids,
test_labels,
) = convert_examples_to_features(
tokenizer, test_examples, max_seq_length=max_seq_length
)
np.savez(fn,
train_input_ids=train_input_ids,
train_input_masks=train_input_masks,
train_segment_ids=train_segment_ids,
train_labels=train_labels,
test_input_ids=test_input_ids,
test_input_masks=test_input_masks,
test_segment_ids=test_segment_ids,
test_labels=test_labels
)
return (
train_input_ids,
train_input_masks,
train_segment_ids,
train_labels,
test_input_ids,
test_input_masks,
test_segment_ids,
test_labels
)