-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmanual_tokens.py
109 lines (78 loc) · 2.87 KB
/
manual_tokens.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import pandas as pd
import numpy as np
import os
import re
from nltk.tokenize import sent_tokenize
languages = {
0: 'Danish', 1: 'German',
2: 'Greek', 3: 'English',
4: 'Spanish', 5: 'Finnish',
6: 'French', 7: 'Italian',
8: 'Dutch', 9: 'Portuguese',
10: 'Swedish', 11: 'Bulgarian',
12: 'Czech', 13: 'Estonian',
14: 'Hungarian', 15: 'Lithuanian',
16: 'Latvian', 17: 'Polish',
18: 'Romanian', 19: 'Slovak',
20: 'Slovenian'
}
def extract_language(language):
with open(os.getcwd() + '/dataset/' + language +".txt") as outfile:
lang = outfile.read()
return lang
def clean(language):
pattern = r'<(!?).*>'
language = re.sub(pattern, '', language)
language = ''.join([i for i in language if not i.isdigit()])
language = ''.join([i for i in language if i not in "(){}[]\n,'"])
language = sent_tokenize(language)
language = [i for i in language if len(i)> 4]
return language
def stack(sentences, langauge_id, language):
length = len(sentences)
target = [langauge_id] * length
lang = [language] * length
df = pd.DataFrame(np.c_[sentences, target, lang], columns=['Sentences','Target', 'Language'])
return df
def shuffle(dataframe):
return dataframe.sample(frac=1).reset_index(drop=True)
def preprocess():
data = pd.DataFrame([])
for code,language in languages.items():
extracted = extract_language(language.lower())
cleaned = clean(extracted)
dataframe = stack(cleaned, code, language)
data = data.append(dataframe, ignore_index=True)
data = shuffle(data)
data['Target'] = data['Target'].astype(int)
return data
def total_lines():
sum = 0
for code, lang in languages.items():
extracted = extract_language(lang.lower())
cleaned = clean(extracted)
sum += len(cleaned)
return sum
data = preprocess()
import tensorflow as tf
from sklearn.preprocessing import LabelEncoder
data['Target'].max()
y = tf.keras.utils.to_categorical(data['Target'], num_classes=21)
tok = tf.keras.preprocessing.text.Tokenizer()
tok.fit_on_texts(data['Sentences'])
x = tok.texts_to_sequences(data['Sentences'])
vocab = len(tok.word_index) + 1
pad = tf.keras.preprocessing.sequence.pad_sequences(x,maxlen=(100))
model = tf.keras.models.Sequential([
tf.keras.layers.Embedding(input_dim=vocab,
output_dim=200,
input_length=120),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(21, activation=tf.nn.softmax)
])
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(pad, y, test_size=0.1, random_state=42)
model.fit(X_train,y_train,epochs=3)
#model.evaluate(X_test, y_test)
model.save('language2.h5')