-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_attention.py
104 lines (74 loc) · 3.01 KB
/
evaluate_attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import tensorflow as tf
import tensorflow_datasets as tfds
import numpy as np
from enc_dec_utils import Encoder, Decoder
import re
from absl import flags, app
FLAGS = flags.FLAGS
def preprocess(sentence, lower=False):
if lower:
sentence = sentence.lower()
sentence = re.sub(r"([?.!,¿])", r" \1 ", sentence)
sentence = re.sub(r'[" "]+', " ", sentence)
sentence = sentence.strip()
sentence = ' '.join(sentence.split())
return sentence
max_length = 30
EMBEDDING_DIM = 256
units = 1024
flags.DEFINE_string('input_vocab', None, 'Path to input vocabulary')
flags.DEFINE_string('target_vocab', None, 'Path to target vocabulary')
flags.DEFINE_string('checkpoint', './checkpoints/train',
"Path to Checkpoint Directory")
def main(absl):
input_tok = tfds.features.text.SubwordTextEncoder.load_from_file(
FLAGS.input_vocab)
target_tok = tfds.features.text.SubwordTextEncoder.load_from_file(
FLAGS.target_vocab)
checkpoint_path = FLAGS.checkpoint
input_vocab_size = input_tok.vocab_size + 2
target_vocab_size = target_tok.vocab_size + 2
encoder = Encoder(input_vocab_size, EMBEDDING_DIM,
units, 1, batch_norm=True)
decoder = Decoder(target_vocab_size, EMBEDDING_DIM,
units, 1, batch_norm=True)
ckpt = tf.train.Checkpoint(encoder=encoder,
decoder=decoder)
ckpt_manager = tf.train.CheckpointManager(
ckpt, checkpoint_path, max_to_keep=5)
if ckpt_manager.latest_checkpoint:
ckpt.restore(ckpt_manager.latest_checkpoint)
else:
print('No Checkpoint Found')
def evaluate(sentence):
sentence = preprocess(sentence)
start_token = [input_tok.vocab_size]
end_token = [input_tok.vocab_size + 1]
inputs = tf.convert_to_tensor(
start_token + input_tok.encode(sentence) + end_token)
inputs = tf.keras.preprocessing.sequence.pad_sequences(
[inputs], maxlen=max_length)
hidden = [tf.zeros((1, units))]
enc_out, enc_hidden = encoder(inputs, hidden)
dec_hidden = enc_hidden
dec_input = tf.expand_dims([target_tok.vocab_size], 0)
result = []
for t in range(max_length):
predictions, dec_hidden, _ = decoder(dec_input,
dec_hidden,
enc_out)
predicted_id = tf.argmax(predictions[0]).numpy()
result.append(predicted_id)
if predicted_id == target_tok.vocab_size + 1:
return result
dec_input = tf.expand_dims([predicted_id], 0)
return result
def translate(sentence):
result = evaluate(sentence)
predicted_sentence = target_tok.decode(
[i for i in result if i < target_tok.vocab_size])
print(f'Input: {sentence}')
print(f'Predic: {predicted_sentence}')
translate(input('Input:: '))
if __name__ == '__main__':
app.run(main)