-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_transformer.py
102 lines (75 loc) · 3.38 KB
/
evaluate_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import tensorflow as tf
from transformer_utils import Transformer
import tensorflow_datasets as tfds
from keras_utils import create_look_ahead_mask, create_padding_mask
from absl import flags, app
EMBEDDING_DIM = 512
NUM_LAYERS = 6
DFF = 2048
NUM_HEADS = 8
MAX_LENGTH = 20
FLAGS = flags.FLAGS
flags.DEFINE_string('input_vocab', None, 'Path to input vocabulary')
flags.DEFINE_string('target_vocab', None, 'Path to target vocabulary')
flags.DEFINE_string('checkpoint', './checkpoints/train',
"Path to Checkpoint Directory")
def main(absl):
input_tok = tfds.features.text.SubwordTextEncoder.load_from_file(
FLAGS.input_vocab)
target_tok = tfds.features.text.SubwordTextEncoder.load_from_file(
FLAGS.target_vocab)
checkpoint_path = FLAGS.checkpoint
input_vocab_size = input_tok.vocab_size + 2
target_vocab_size = target_tok.vocab_size + 2
dropout_rate = 0.1
transformer = Transformer(NUM_LAYERS, EMBEDDING_DIM, NUM_HEADS, DFF,
input_vocab_size, target_vocab_size,
pe_input=input_vocab_size,
pe_target=target_vocab_size,
rate=dropout_rate)
ckpt = tf.train.Checkpoint(transformer=transformer)
ckpt_manager = tf.train.CheckpointManager(
ckpt, checkpoint_path, max_to_keep=5)
if ckpt_manager.latest_checkpoint:
ckpt.restore(ckpt_manager.latest_checkpoint)
else:
print("No checkpoint found")
def create_masks(inp, tar):
enc_padding_mask = create_padding_mask(inp)
dec_padding_mask = create_padding_mask(inp)
look_ahead_mask = create_look_ahead_mask(tf.shape(tar)[1])
dec_target_padding_mask = create_padding_mask(tar)
combined_mask = tf.maximum(dec_target_padding_mask, look_ahead_mask)
return enc_padding_mask, combined_mask, dec_padding_mask
def evaluate(sentence):
start_token = [input_tok.vocab_size]
end_token = [input_tok.vocab_size + 1]
inp_sentence = start_token + input_tok.encode(sentence) + end_token
encoder_input = tf.expand_dims(inp_sentence, 0)
decoder_input = [target_tok.vocab_size]
output = tf.expand_dims(decoder_input, 0)
for i in range(MAX_LENGTH):
enc_padding_mask, combined_mask, dec_padding_mask = create_masks(
encoder_input, output
)
predictions, _ = transformer(encoder_input,
output,
False,
enc_padding_mask,
combined_mask,
dec_padding_mask)
predictions = predictions[:, -1:, :]
predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32)
if predicted_id == target_tok.vocab_size + 1:
return tf.squeeze(output, axis=0)
output = tf.concat([output, predicted_id], axis=-1)
return tf.squeeze(output, axis=0)
def translate(sentence):
result = evaluate(sentence)
predicted_sentence = target_tok.decode(
[i for i in result if i < target_tok.vocab_size])
print(f'Input: {sentence}')
print(f'Predic: {predicted_sentence}')
translate(input('Input:: '))
if __name__ == '__main__':
app.run(main)