forked from sunidhi2001/Hacktoberfest2022-accepted
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Sudoku.py
125 lines (99 loc) · 2.92 KB
/
Sudoku.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# N is the size of the 2D matrix N*N
N = 9
# A utility function to print grid
def printing(arr):
for i in range(N):
for j in range(N):
print(arr[i][j], end=" ")
print()
# Checks whether it will be
# legal to assign num to the
# given row, col
def isSafe(grid, row, col, num):
# Check if we find the same num
# in the similar row , we
# return false
for x in range(9):
if grid[row][x] == num:
return False
# Check if we find the same num in
# the similar column , we
# return false
for x in range(9):
if grid[x][col] == num:
return False
# Check if we find the same num in
# the particular 3*3 matrix,
# we return false
startRow = row - row % 3
startCol = col - col % 3
for i in range(3):
for j in range(3):
if grid[i + startRow][j + startCol] == num:
return False
return True
# Takes a partially filled-in grid and attempts
# to assign values to all unassigned locations in
# such a way to meet the requirements for
# Sudoku solution (non-duplication across rows,
# columns, and boxes) */
def solveSudoku(grid, row, col):
# Check if we have reached the 8th
# row and 9th column (0
# indexed matrix) , we are
# returning true to avoid
# further backtracking
if row == N - 1 and col == N:
return True
# Check if column value becomes 9 ,
# we move to next row and
# column start from 0
if col == N:
row += 1
col = 0
# Check if the current position of
# the grid already contains
# value >0, we iterate for next column
if grid[row][col] > 0:
return solveSudoku(grid, row, col + 1)
for num in range(1, N + 1, 1):
# Check if it is safe to place
# the num (1-9) in the
# given row ,col ->we
# move to next column
if isSafe(grid, row, col, num):
# Assigning the num in
# the current (row,col)
# position of the grid
# and assuming our assigned
# num in the position
# is correct
grid[row][col] = num
# Checking for next possibility with next
# column
if solveSudoku(grid, row, col + 1):
return True
# Removing the assigned num ,
# since our assumption
# was wrong , and we go for
# next assumption with
# diff num value
grid[row][col] = 0
return False
# Driver Code
# 0 means unassigned cells
grid = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
if solveSudoku(grid, 0, 0):
printing(grid)
else:
print("no solution exists ")