-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
54 lines (50 loc) · 1.89 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from flask import Flask, render_template, request
import jsonify
import requests
import pickle
import numpy as np
import sklearn
from sklearn.preprocessing import StandardScaler
app = Flask(__name__)
model = pickle.load(open('Random_forest_regressor.pkl', 'rb'))
@app.route('/',methods=['GET'])
def Home():
return render_template('index.html')
standard_to = StandardScaler()
@app.route("/predict", methods=['POST'])
def predict():
Fuel_Type_Diesel=0
if request.method == 'POST':
Year = int(request.form['Year'])
Present_Price=float(request.form['Present_Price'])
Kms_Driven=int(request.form['Kms_Driven'])
Kms_Driven2=np.log(Kms_Driven)
Owner=int(request.form['Owner'])
Fuel_Type_Petrol=request.form['Fuel_Type_Petrol']
if(Fuel_Type_Petrol=='Petrol'):
Fuel_Type_Petrol=1
Fuel_Type_Diesel=0
else:
Fuel_Type_Petrol=0
Fuel_Type_Diesel=1
Year=2020-Year
Seller_Type_Individual=request.form['Seller_Type_Individual']
if(Seller_Type_Individual=='Individual'):
Seller_Type_Individual=1
else:
Seller_Type_Individual=0
Transmission_Manual=request.form['Transmission_Manual']
if(Transmission_Manual=='Manual'):
Transmission_Manual=1
else:
Transmission_Manual=0
prediction=model.predict([[Present_Price,Kms_Driven2,Owner,Year,Fuel_Type_Diesel,Fuel_Type_Petrol,Seller_Type_Individual,Transmission_Manual]])
output=round(prediction[0],2)
if output<0:
return render_template('index.html',prediction_texts="Sorry you cannot sell this car")
else:
return render_template('index.html',prediction_text="You Can Sell The Car at {} Lakhs".format(output))
else:
return render_template('index.html')
if __name__=="__main__":
app.run(debug=True)