-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcam.py
210 lines (165 loc) · 6.06 KB
/
cam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# organize imports
import cv2
import imutils
import numpy as np
from sklearn.metrics import pairwise
from keras.models import load_model
import tkinter as tk
import time
# global variables
bg = None
def run_avg(image, accumWeight):
global bg
# initialize the background
if bg is None:
bg = image.copy().astype("float")
return
# compute weighted average, accumulate it and update the background
cv2.accumulateWeighted(image, bg, accumWeight)
def segment(image, threshold=25):
global bg
# find the absolute difference between background and current frame
diff = cv2.absdiff(bg.astype("uint8"), image)
# threshold the diff image so that we get the foreground
thresholded = cv2.threshold(diff, threshold, 255, cv2.THRESH_BINARY)[1]
# get the contours in the thresholded image
(cnts, _) = cv2.findContours(thresholded.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# return None, if no contours detected
if len(cnts) == 0:
return
else:
# based on contour area, get the maximum contour which is the hand
segmented = max(cnts, key=cv2.contourArea)
return (thresholded, segmented)
def _load_weights():
try:
model = load_model("/home/saichandra/Desktop/Hand-Gestures-Recognition-master/hand_gesture_recognition.h5")
# print(model.get_weights())
# print(model.optimizer)
return model
except Exception as e:
return None
li=[]
le=[]
def getPredictedClass(model):
image = cv2.imread('Temp.png')
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray_image = cv2.resize(gray_image, dsize=(100, 120))
gray_image = gray_image.reshape(1, 100, 120, 1)
prediction = model.predict(gray_image)
predicted_class = np.argmax(prediction)
if predicted_class == 0:
print("Blank")
return "Blank"
time.sleep(100)
elif predicted_class == 1:
print("None")
return "None"
time.sleep(100)
elif predicted_class == 2:
li.append("Thumbs Up")
print("Thumbs Up")
return "Thumbs Up"
time.sleep(100)
elif predicted_class == 3:
le.append("Thumbs Down")
print("Thumbs Down")
return "Thumbs Down"
time.sleep(100)
elif predicted_class == 4:
print("None")
return "None"
elif predicted_class == 5:
print("None")
return "None"
time.sleep(100)
if __name__ == "__main__":
# initialize accumulated weight
accumWeight = 0.5
# get the reference to the webcam
camera = cv2.VideoCapture(0)
fps = int(camera.get(cv2.CAP_PROP_FPS))
# region of interest (ROI) coordinates
top, right, bottom, left = 10, 350, 225, 590
# initialize num of frames
num_frames = 0
# calibration indicator
calibrated = False
model = _load_weights()
k = 0
# keep looping, until interrupted
while (True):
# get the current frame
(grabbed, frame) = camera.read()
# resize the frame
frame = imutils.resize(frame, width=700)
# flip the frame so that it is not the mirror view
frame = cv2.flip(frame, 1)
# clone the frame
clone = frame.copy()
# get the height and width of the frame
(height, width) = frame.shape[:2]
# get the ROI
roi = frame[top:bottom, right:left]
# convert the roi to grayscale and blur it
gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (7, 7), 0)
# to get the background, keep looking till a threshold is reached
# so that our weighted average model gets calibrated
if num_frames < 30:
run_avg(gray, accumWeight)
if num_frames == 1:
print("[STATUS] please wait! calibrating...")
elif num_frames == 29:
print("[STATUS] calibration successfull...")
else:
# segment the hand region
hand = segment(gray)
# check whether hand region is segmented
if hand is not None:
# if yes, unpack the thresholded image and
# segmented region
(thresholded, segmented) = hand
# draw the segmented region and display the frame
cv2.drawContours(clone, [segmented + (right, top)], -1, (0, 0, 255))
# count the number of fingers
# fingers = count(thresholded, segmented)
if k % (fps / 6) == 0:
cv2.imwrite('Temp.png', thresholded)
predictedClass = getPredictedClass(model)
cv2.putText(clone, str(predictedClass), (70, 45), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
# show the thresholded image
cv2.imshow("Thesholded", thresholded)
k = k + 1
# draw the segmented hand
cv2.rectangle(clone, (left, top), (right, bottom), (0, 255, 0), 2)
# increment the number of frames
num_frames += 1
# display the frame with segmented hand
cv2.imshow("Gesture Detection", clone)
# observe the keypress by the user
keypress = cv2.waitKey(1) & 0xFF
# if the user pressed "q", then stop looping
if keypress == ord("q"):
x=len(li)
print("Thumbs Up: ",x)
y=len(le)
print("Thumbs Down: ",y)
if (x==0 and y==0):
print("YOUR RESULT : "+"Not Responded")
elif(x==y):
print("YOUR RESULT: "+"Not Responded")
elif(x==0 and y>x):
li.append("Thumbs Up")
print("YOUR RESULT : ",str(set(le)))
elif(y==0 and x>y):
le.append("Thumbs Down")
print("YOUR RESULT : ",str(set(li)))
elif(x>y):
print("YOUR RESULT : ",str(set(li)))
elif(y>x):
print("YOUR RESULT : ",str(set(le)))
break
# free up memory
camera.release()
cv2.destroyAllWindows()