forked from j3soon/podgorskiy-ALAE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
interactive_demo_custom.py
254 lines (196 loc) · 8.32 KB
/
interactive_demo_custom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# Copyright 2019-2020 Stanislav Pidhorskyi
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import torch.utils.data
from net import *
from model import Model
from launcher import run
from checkpointer import Checkpointer
from dlutils.pytorch import count_parameters
from defaults import get_cfg_defaults
import lreq
from PIL import Image
import bimpy
lreq.use_implicit_lreq.set(True)
indices = [0, 1, 2, 3, 4, 10, 11, 17, 19]
labels = ["gender",
"smile",
"attractive",
"wavy-hair",
"young",
"big lips",
"big nose",
"chubby",
"glasses",
]
def sample(cfg, logger):
torch.cuda.set_device(0)
model = Model(
startf=cfg.MODEL.START_CHANNEL_COUNT,
layer_count=cfg.MODEL.LAYER_COUNT,
maxf=cfg.MODEL.MAX_CHANNEL_COUNT,
latent_size=cfg.MODEL.LATENT_SPACE_SIZE,
truncation_psi=cfg.MODEL.TRUNCATIOM_PSI,
truncation_cutoff=cfg.MODEL.TRUNCATIOM_CUTOFF,
mapping_layers=cfg.MODEL.MAPPING_LAYERS,
channels=cfg.MODEL.CHANNELS,
generator=cfg.MODEL.GENERATOR,
encoder=cfg.MODEL.ENCODER)
model.cuda(0)
model.eval()
model.requires_grad_(False)
decoder = model.decoder
encoder = model.encoder
mapping_tl = model.mapping_tl
mapping_fl = model.mapping_fl
dlatent_avg = model.dlatent_avg
logger.info("Trainable parameters generator:")
count_parameters(decoder)
logger.info("Trainable parameters discriminator:")
count_parameters(encoder)
arguments = dict()
arguments["iteration"] = 0
model_dict = {
'discriminator_s': encoder,
'generator_s': decoder,
'mapping_tl_s': mapping_tl,
'mapping_fl_s': mapping_fl,
'dlatent_avg': dlatent_avg
}
checkpointer = Checkpointer(cfg,
model_dict,
{},
logger=logger,
save=False)
extra_checkpoint_data = checkpointer.load()
model.eval()
layer_count = cfg.MODEL.LAYER_COUNT
def encode(x):
Z, _ = model.encode(x, layer_count - 1, 1)
Z = Z.repeat(1, model.mapping_fl.num_layers, 1)
return Z
def decode(x):
layer_idx = torch.arange(2 * layer_count)[np.newaxis, :, np.newaxis]
ones = torch.ones(layer_idx.shape, dtype=torch.float32)
coefs = torch.where(layer_idx < model.truncation_cutoff, ones, ones)
# x = torch.lerp(model.dlatent_avg.buff.data, x, coefs)
return model.decoder(x, layer_count - 1, 1, noise=True)
path = 'dataset_samples/faces/realign_custom1024x1024'
paths = list(os.listdir(path))
paths.sort()
paths_backup = paths[:]
randomize = bimpy.Bool(True)
current_file = bimpy.String("")
ctx = bimpy.Context()
attribute_values = [bimpy.Float(0) for i in indices]
W = [torch.tensor(np.load("principal_directions/direction_%d.npy" % i), dtype=torch.float32) for i in indices]
rnd = np.random.RandomState(5)
def loadNext():
img = np.asarray(Image.open(path + '/' + paths[0]))
current_file.value = paths[0]
paths.pop(0)
if len(paths) == 0:
paths.extend(paths_backup)
if img.shape[2] == 4:
img = img[:, :, :3]
im = img.transpose((2, 0, 1))
x = torch.tensor(np.asarray(im, dtype=np.float32), device='cpu', requires_grad=True).cuda() / 127.5 - 1.
if x.shape[0] == 4:
x = x[:3]
needed_resolution = model.decoder.layer_to_resolution[-1]
while x.shape[2] > needed_resolution:
x = F.avg_pool2d(x, 2, 2)
if x.shape[2] != needed_resolution:
x = F.adaptive_avg_pool2d(x, (needed_resolution, needed_resolution))
img_src = ((x * 0.5 + 0.5) * 255).type(torch.long).clamp(0, 255).cpu().type(torch.uint8).transpose(0, 2).transpose(0, 1).numpy()
latents_original = encode(x[None, ...].cuda())
latents = latents_original[0, 0].clone()
latents -= model.dlatent_avg.buff.data[0]
for v, w in zip(attribute_values, W):
v.value = (latents * w).sum()
for v, w in zip(attribute_values, W):
latents = latents - v.value * w
return latents, latents_original, img_src
def loadRandom():
latents = rnd.randn(1, cfg.MODEL.LATENT_SPACE_SIZE)
lat = torch.tensor(latents).float().cuda()
dlat = mapping_fl(lat)
layer_idx = torch.arange(2 * layer_count)[np.newaxis, :, np.newaxis]
ones = torch.ones(layer_idx.shape, dtype=torch.float32)
coefs = torch.where(layer_idx < model.truncation_cutoff, ones, ones)
dlat = torch.lerp(model.dlatent_avg.buff.data, dlat, coefs)
x = decode(dlat)[0]
img_src = ((x * 0.5 + 0.5) * 255).type(torch.long).clamp(0, 255).cpu().type(torch.uint8).transpose(0, 2).transpose(0, 1).numpy()
latents_original = dlat
latents = latents_original[0, 0].clone()
latents -= model.dlatent_avg.buff.data[0]
for v, w in zip(attribute_values, W):
v.value = (latents * w).sum()
for v, w in zip(attribute_values, W):
latents = latents - v.value * w
return latents, latents_original, img_src
latents, latents_original, img_src = loadNext()
ctx.init(1800, 1600, "Styles")
def update_image(w, latents_original):
with torch.no_grad():
w = w + model.dlatent_avg.buff.data[0]
w = w[None, None, ...].repeat(1, model.mapping_fl.num_layers, 1)
layer_idx = torch.arange(model.mapping_fl.num_layers)[np.newaxis, :, np.newaxis]
cur_layers = (7 + 1) * 2
mixing_cutoff = cur_layers
styles = torch.where(layer_idx < mixing_cutoff, w, latents_original)
x_rec = decode(styles)
resultsample = ((x_rec * 0.5 + 0.5) * 255).type(torch.long).clamp(0, 255)
resultsample = resultsample.cpu()[0, :, :, :]
return resultsample.type(torch.uint8).transpose(0, 2).transpose(0, 1)
im_size = 2 ** (cfg.MODEL.LAYER_COUNT + 1)
im = update_image(latents, latents_original)
print(im.shape)
im = bimpy.Image(im)
display_original = True
seed = 0
while not ctx.should_close():
with ctx:
new_latents = latents + sum([v.value * w for v, w in zip(attribute_values, W)])
if display_original:
im = bimpy.Image(img_src)
else:
im = bimpy.Image(update_image(new_latents, latents_original))
bimpy.begin("Principal directions")
bimpy.columns(2)
bimpy.set_column_width(0, im_size + 20)
bimpy.image(im)
bimpy.next_column()
for v, label in zip(attribute_values, labels):
bimpy.slider_float(label, v, -40.0, 40.0)
bimpy.checkbox("Randomize noise", randomize)
if randomize.value:
seed += 1
torch.manual_seed(seed)
if bimpy.button('Next'):
latents, latents_original, img_src = loadNext()
display_original = True
if bimpy.button('Display Reconstruction'):
display_original = False
if bimpy.button('Generate random'):
latents, latents_original, img_src = loadRandom()
display_original = False
if bimpy.input_text("Current file", current_file, 64) and os.path.exists(path + '/' + current_file.value):
paths.insert(0, current_file.value)
latents, latents_original, img_src = loadNext()
bimpy.end()
if __name__ == "__main__":
gpu_count = 1
run(sample, get_cfg_defaults(), description='ALAE-interactive', default_config='configs/ffhq.yaml',
world_size=gpu_count, write_log=False)