-
Notifications
You must be signed in to change notification settings - Fork 0
/
project_images.py
124 lines (106 loc) · 5.54 KB
/
project_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import argparse
import os
import shutil
import numpy as np
import dnnlib
import dnnlib.tflib as tflib
import pretrained_networks
import projector
import dataset_tool
from training import dataset
from training import misc
def project_image(proj, src_file, dst_dir, tmp_dir, video=False):
data_dir = '%s/dataset' % tmp_dir
if os.path.exists(data_dir):
shutil.rmtree(data_dir)
image_dir = '%s/images' % data_dir
tfrecord_dir = '%s/tfrecords' % data_dir
os.makedirs(image_dir, exist_ok=True)
shutil.copy(src_file, image_dir + '/')
dataset_tool.create_from_images(tfrecord_dir, image_dir, shuffle=0)
dataset_obj = dataset.load_dataset(
data_dir=data_dir, tfrecord_dir='tfrecords',
max_label_size=0, repeat=False, shuffle_mb=0
)
print('Projecting image "%s"...' % os.path.basename(src_file))
images, _labels = dataset_obj.get_minibatch_np(1)
images = misc.adjust_dynamic_range(images, [0, 255], [-1, 1])
proj.start(images)
if video:
video_dir = '%s/video' % tmp_dir
os.makedirs(video_dir, exist_ok=True)
while proj.get_cur_step() < proj.num_steps:
print('\r%d / %d ... ' % (proj.get_cur_step(), proj.num_steps), end='', flush=True)
proj.step()
if video:
filename = '%s/%08d.png' % (video_dir, proj.get_cur_step())
misc.save_image_grid(proj.get_images(), filename, drange=[-1,1])
print('\r%-30s\r' % '', end='', flush=True)
os.makedirs(dst_dir, exist_ok=True)
filename = os.path.join(dst_dir, os.path.basename(src_file)[:-4] + '.png')
misc.save_image_grid(proj.get_images(), filename, drange=[-1,1])
filename = os.path.join(dst_dir, os.path.basename(src_file)[:-4] + '.npy')
np.save(filename, proj.get_dlatents()[0])
return proj.get_dlatents()[0]
def render_video(src_file, dst_dir, tmp_dir, num_frames, mode, size, fps, codec, bitrate):
import PIL.Image
import moviepy.editor
def render_frame(t):
frame = np.clip(np.ceil(t * fps), 1, num_frames)
image = PIL.Image.open('%s/video/%08d.png' % (tmp_dir, frame))
if mode == 1:
canvas = image
else:
canvas = PIL.Image.new('RGB', (2 * src_size, src_size))
canvas.paste(src_image, (0, 0))
canvas.paste(image, (src_size, 0))
if size != src_size:
canvas = canvas.resize((mode * size, size), PIL.Image.LANCZOS)
return np.array(canvas)
src_image = PIL.Image.open(src_file)
src_size = src_image.size[1]
duration = num_frames / fps
filename = os.path.join(dst_dir, os.path.basename(src_file)[:-4] + '.mp4')
video_clip = moviepy.editor.VideoClip(render_frame, duration=duration)
video_clip.write_videofile(filename, fps=fps, codec=codec, bitrate=bitrate)
def main():
parser = argparse.ArgumentParser(description='Project real-world images into StyleGAN2 latent space')
parser.add_argument('src_dir', help='Directory with aligned images for projection')
parser.add_argument('dst_dir', help='Output directory')
parser.add_argument('--tmp-dir', default='.stylegan2-tmp', help='Temporary directory for tfrecords and video frames')
parser.add_argument('--network-pkl', default='https://drive.google.com/uc?id=1IxRyfTf62KBjyc486JA5tGLVnFh_d4eO', help='StyleGAN2 network pickle filename')
parser.add_argument('--vgg16-pkl', default='https://drive.google.com/uc?id=1N2-m9qszOeVC9Tq77WxsLnuWwOedQiD2', help='VGG16 network pickle filename')
parser.add_argument('--num-steps', type=int, default=1000, help='Number of optimization steps')
parser.add_argument('--initial-learning-rate', type=float, default=0.1, help='Initial learning rate')
parser.add_argument('--initial-noise-factor', type=float, default=0.05, help='Initial noise factor')
parser.add_argument('--dlatent_avg_fname', default=None, help='Fname for dlatnt avg')
parser.add_argument('--verbose', type=bool, default=False, help='Verbose output')
parser.add_argument('--video', type=bool, default=False, help='Render video of the optimization process')
parser.add_argument('--video-mode', type=int, default=1, help='Video mode: 1 for optimization only, 2 for source + optimization')
parser.add_argument('--video-size', type=int, default=256, help='Video size (height in px)')
parser.add_argument('--video-fps', type=int, default=25, help='Video framerate')
parser.add_argument('--video-codec', default='libx264', help='Video codec')
parser.add_argument('--video-bitrate', default='5M', help='Video bitrate')
args = parser.parse_args()
print('Loading networks from "%s"...' % args.network_pkl)
_G, _D, Gs = pretrained_networks.load_networks(args.network_pkl)
proj = projector.Projector(
vgg16_pkl = args.vgg16_pkl,
num_steps = args.num_steps,
initial_learning_rate = args.initial_learning_rate,
initial_noise_factor = args.initial_noise_factor,
verbose = args.verbose,
dlatent_avg_fname = args.dlatent_avg_fname
)
proj.set_network(Gs)
src_files = sorted([os.path.join(args.src_dir, f) for f in os.listdir(args.src_dir) if f[0] not in '._'])
for src_file in src_files:
project_image(proj, src_file, args.dst_dir, args.tmp_dir, video=args.video)
if args.video:
render_video(
src_file, args.dst_dir, args.tmp_dir, args.num_steps, args.video_mode,
args.video_size, args.video_fps, args.video_codec, args.video_bitrate
)
shutil.rmtree(args.tmp_dir)
if __name__ == '__main__':
main()