-
-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathmain.py
65 lines (59 loc) · 2.32 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
"""Main function
"""
import numpy as np
import tensorflow as tf
import SharedArray as sa
from musegan.bmusegan.models import GAN, RefineGAN, End2EndGAN
from config import EXP_CONFIG, DATA_CONFIG, MODEL_CONFIG, TRAIN_CONFIG
from config import TF_CONFIG
def load_data():
"""Load and return the training data."""
print('[*] Loading data...')
if DATA_CONFIG['training_data_location'] == 'sa':
x_train = sa.attach(DATA_CONFIG['training_data'])
elif DATA_CONFIG['training_data_location'] == 'hd':
x_train = np.load(DATA_CONFIG['training_data'])
x_train = x_train.reshape(
-1, MODEL_CONFIG['num_bar'], MODEL_CONFIG['num_timestep'],
MODEL_CONFIG['num_pitch'], MODEL_CONFIG['num_track']
)
print('Training set size:', len(x_train))
return x_train
def pretrain():
"""Create and pretrain a two-stage model"""
x_train = load_data()
with tf.Session(config=TF_CONFIG) as sess:
gan = GAN(sess, MODEL_CONFIG)
gan.init_all()
if EXP_CONFIG['pretrained_dir'] is not None:
gan.load_latest(EXP_CONFIG['pretrained_dir'])
gan.train(x_train, TRAIN_CONFIG)
def train():
"""Load the pretrained model and run the second-stage training"""
x_train = load_data()
with tf.Session(config=TF_CONFIG) as sess:
gan = GAN(sess, MODEL_CONFIG)
gan.init_all()
gan.load_latest(EXP_CONFIG['first_stage_dir'])
refine_gan = RefineGAN(sess, MODEL_CONFIG, gan)
refine_gan.init_all()
if EXP_CONFIG['pretrained_dir'] is not None:
refine_gan.load_latest(EXP_CONFIG['pretrained_dir'])
refine_gan.train(x_train, TRAIN_CONFIG)
def train_end2end():
"""Create and train an end-to-end model"""
x_train = load_data()
with tf.Session(config=TF_CONFIG) as sess:
end2end_gan = End2EndGAN(sess, MODEL_CONFIG)
end2end_gan.init_all()
if EXP_CONFIG['pretrained_dir'] is not None:
end2end_gan.load_latest(EXP_CONFIG['pretrained_dir'])
end2end_gan.train(x_train, TRAIN_CONFIG)
if __name__ == '__main__':
print("Start experiment: {}".format(EXP_CONFIG['exp_name']))
if not EXP_CONFIG['two_stage_training']:
train_end2end()
elif TRAIN_CONFIG['training_phase'] == 'pretrain':
pretrain()
elif TRAIN_CONFIG['training_phase'] == 'train':
train()