-
Notifications
You must be signed in to change notification settings - Fork 25
/
evaluate.py
100 lines (77 loc) · 3.31 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
"""Module to evaluate full pipeline on the validation set.
python evaluate.py
"""
#!/usr/bin/env python
# coding: utf-8
import os
import sys
import glob
import numpy as np
import image_preprocessing
import cnn
import bayesian_network
import json
import pandas as pd
# class mapping
classes = {"Positive": 0, "Neutral": 1, "Negative": 2, "None": 3}
# function to classify an image
def classify_image(image_folder_path, image_name, real_label, cnn_model, bayesian_model, labels_list):
with open('val_labels.json', mode='r', encoding='utf-8') as f:
image_labels_dict = json.load(f)
labels = image_labels_dict[image_name]
# print("RadhaKrishna")
# print(labels)
# preprocess the image
image_preprocessing.preprocess(image_folder_path, image_name)
# get mean cnn predictions for the faces from the image
cnn_label, cnn_dict, faces_detected = cnn.predict_image(cnn_model, image_folder_path + "Aligned/", image_name)
# get the bayesian and bayesian + cnn predictions for the image
bayesian_label, bayesian_cnn_label, emotion_dict, emotion_cnn_dict = bayesian_network.inference(bayesian_model, labels_list, labels, cnn_label)
# print("Faces detected: " + str(faces_detected))
# print("Real Label: " + str(real_label))
# print("CNN Label: " + str(cnn_label))
# print("Bayesian Label: " + str(bayesian_label))
# print("Bayesian + CNN Label: " + str(bayesian_cnn_label))
return classes[real_label], classes[str(cnn_label)], classes[str(bayesian_label)], classes[str(bayesian_cnn_label)], faces_detected
# load the cnn model
cnn_model = cnn.load_model()
# load the bayesian model
bayesian_model, labels_list = bayesian_network.load_model()
# function to evaluate the pipeline on a given directory
def evaluate(image_folder_path, real_label):
# print("RadhaKrishna")
# get the count of total number of files in the directory
_, _, files = next(os.walk(image_folder_path))
file_count = len(files)-1
# list to store the predictions
predictions = []
# set count = 1
i = 1
# for each image in the directory
for file in sorted(glob.glob(image_folder_path + "*.jpg")):
# extract the image name
image_name = (file.split('/'))[-1]
print("Image: " + image_name)
print(str(i) + "/" + str(file_count))
# create a dict to store the image name and predictions
prediction = {"Image": image_name}
prediction["Actual"], prediction["CNN"], prediction["Bayesian"], prediction["Bayesian + CNN"], prediction["Faces Detected"] = classify_image(image_folder_path, image_name, real_label, cnn_model, bayesian_model, labels_list)
# append the dict to the list of predictions
predictions.append(prediction)
# increase the count
i+=1
# return the predictions list
return predictions
# class list
class_list = ['Positive', 'Neutral', 'Negative']
predictions_list = []
# for each class in the class list
for emotion_class in class_list:
# evaluate all the images in that folder
predictions = evaluate('input/val/' + emotion_class + '/', emotion_class)
# add the predictions to the predictions list
predictions_list += predictions
# create a pandas dataframe from the predictions list
df = pd.DataFrame(predictions_list)
# store the dataframe to a file
df.to_pickle('predictions')