forked from commaai/research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
server.py
executable file
·212 lines (180 loc) · 6.68 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#!/usr/bin/env python
"""
Note:
Part of this code was copied and modified from github.com/mila-udem/fuel.git (MIT License)
"""
import logging
import numpy
import zmq
from numpy.lib.format import header_data_from_array_1_0
import six
if six.PY3:
buffer_ = memoryview
else:
buffer_ = buffer # noqa
logger = logging.getLogger(__name__)
def send_arrays(socket, arrays, stop=False):
"""Send NumPy arrays using the buffer interface and some metadata.
Parameters
----------
socket : :class:`zmq.Socket`
The socket to send data over.
arrays : list
A list of :class:`numpy.ndarray` to transfer.
stop : bool, optional
Instead of sending a series of NumPy arrays, send a JSON object
with a single `stop` key. The :func:`recv_arrays` will raise
``StopIteration`` when it receives this.
Notes
-----
The protocol is very simple: A single JSON object describing the array
format (using the same specification as ``.npy`` files) is sent first.
Subsequently the arrays are sent as bytestreams (through NumPy's
support of the buffering protocol).
"""
if arrays:
# The buffer protocol only works on contiguous arrays
arrays = [numpy.ascontiguousarray(array) for array in arrays]
if stop:
headers = {'stop': True}
socket.send_json(headers)
else:
headers = [header_data_from_array_1_0(array) for array in arrays]
socket.send_json(headers, zmq.SNDMORE)
for array in arrays[:-1]:
socket.send(array, zmq.SNDMORE)
socket.send(arrays[-1])
def recv_arrays(socket):
"""Receive a list of NumPy arrays.
Parameters
----------
socket : :class:`zmq.Socket`
The socket to receive the arrays on.
Returns
-------
list
A list of :class:`numpy.ndarray` objects.
Raises
------
StopIteration
If the first JSON object received contains the key `stop`,
signifying that the server has finished a single epoch.
"""
headers = socket.recv_json()
if 'stop' in headers:
raise StopIteration
arrays = []
for header in headers:
data = socket.recv()
buf = buffer_(data)
array = numpy.frombuffer(buf, dtype=numpy.dtype(header['descr']))
array.shape = header['shape']
if header['fortran_order']:
array.shape = header['shape'][::-1]
array = array.transpose()
arrays.append(array)
return arrays
def client_generator(port=5557, host="localhost", hwm=20):
"""Generator in client side should extend this generator
Parameters
----------
port : int
hwm : int, optional
The `ZeroMQ high-water mark (HWM)
<http://zguide.zeromq.org/page:all#High-Water-Marks>`_ on the
sending socket. Increasing this increases the buffer, which can be
useful if your data preprocessing times are very random. However,
it will increase memory usage. There is no easy way to tell how
many batches will actually be queued with a particular HWM.
Defaults to 10. Be sure to set the corresponding HWM on the
receiving end as well.
"""
context = zmq.Context()
socket = context.socket(zmq.PULL)
socket.set_hwm(hwm)
socket.connect("tcp://{}:{}".format(host, port))
logger.info('client started')
while True:
data = recv_arrays(socket)
yield tuple(data)
def start_server(data_stream, port=5557, hwm=20):
"""Start a data processing server.
This command starts a server in the current process that performs the
actual data processing (by retrieving data from the given data stream).
It also starts a second process, the broker, which mediates between the
server and the client. The broker also keeps a buffer of batches in
memory.
Parameters
----------
data_stream : generator
The data stream to return examples from.
port : int, optional
The port the server and the client (training loop) will use to
communicate. Defaults to 5557.
hwm : int, optional
The `ZeroMQ high-water mark (HWM)
<http://zguide.zeromq.org/page:all#High-Water-Marks>`_ on the
sending socket. Increasing this increases the buffer, which can be
useful if your data preprocessing times are very random. However,
it will increase memory usage. There is no easy way to tell how
many batches will actually be queued with a particular HWM.
Defaults to 10. Be sure to set the corresponding HWM on the
receiving end as well.
"""
logging.basicConfig(level='INFO')
context = zmq.Context()
socket = context.socket(zmq.PUSH)
socket.set_hwm(hwm)
socket.bind('tcp://*:{}'.format(port))
# it = itertools.tee(data_stream)
it = data_stream
logger.info('server started')
while True:
try:
data = next(it)
stop = False
logger.debug("sending {} arrays".format(len(data)))
except StopIteration:
it = data_stream
data = None
stop = True
logger.debug("sending StopIteration")
send_arrays(socket, data, stop=stop)
# Example
if __name__ == "__main__":
from dask_generator import datagen
import argparse
# Parameters
parser = argparse.ArgumentParser(description='MiniBatch server')
parser.add_argument('--batch', dest='batch', type=int, default=256, help='Batch size')
parser.add_argument('--time', dest='time', type=int, default=1, help='Number of frames per sample')
parser.add_argument('--port', dest='port', type=int, default=5557, help='Port of the ZMQ server')
parser.add_argument('--buffer', dest='buffer', type=int, default=20, help='High-water mark. Increasing this increses buffer and memory usage.')
parser.add_argument('--prep', dest='prep', action='store_true', default=False, help='Use images preprocessed by vision model.')
parser.add_argument('--leads', dest='leads', action='store_true', default=False, help='Use x, y and speed radar lead info.')
parser.add_argument('--nogood', dest='nogood', action='store_true', default=False, help='Ignore `goods` filters.')
parser.add_argument('--validation', dest='validation', action='store_true', default=False, help='Serve validation dataset instead.')
args, more = parser.parse_known_args()
# 9 for training
train_path = [
'./dataset/camera/2016-01-30--11-24-51.h5',
'./dataset/camera/2016-01-30--13-46-00.h5',
'./dataset/camera/2016-01-31--19-19-25.h5',
'./dataset/camera/2016-02-02--10-16-58.h5',
'./dataset/camera/2016-02-08--14-56-28.h5',
'./dataset/camera/2016-02-11--21-32-47.h5',
'./dataset/camera/2016-03-29--10-50-20.h5',
'./dataset/camera/2016-04-21--14-48-08.h5',
'./dataset/camera/2016-05-12--22-20-00.h5',
]
# 2 for validation
validation_path = [
'./dataset/camera/2016-06-02--21-39-29.h5',
'./dataset/camera/2016-06-08--11-46-01.h5'
]
if args.validation:
datapath = validation_path
else:
datapath = train_path
gen = datagen(datapath, time_len=args.time, batch_size=args.batch, ignore_goods=args.nogood)
start_server(gen, port=args.port, hwm=args.buffer)