-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscript.py
49 lines (40 loc) · 1.45 KB
/
script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import os
import openai
import sys
sys.path.append('../..')
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv()) # read local .env file
openai.api_key = os.environ['OPENAI_API_KEY']
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders.generic import GenericLoader
from langchain.document_loaders.parsers import OpenAIWhisperParser
from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader
if len(sys.argv) < 3:
print("Error: You must provide a YouTube link and a vector store name as a command-line argument.")
print("Usage: python script.py <youtube_link> <directory_of_vector_store>")
sys.exit()
url = sys.argv[1]
save_dir=sys.argv[2]
youtube_dir=f"docs/youtube/{save_dir}"
loader = GenericLoader(
YoutubeAudioLoader([url],youtube_dir),
OpenAIWhisperParser()
)
docs = loader.load()
from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter
r_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=100,
separators=["\n\n", "\n", "(?<=\. )", " ", ""]
)
splits = r_splitter.split_text(docs[0].page_content)
from langchain.vectorstores import Chroma
from langchain.embeddings.openai import OpenAIEmbeddings
embedding = OpenAIEmbeddings()
persist_directory = f'docs/chroma/{save_dir}'
vectordb = Chroma.from_texts(
texts=splits,
embedding=embedding,
persist_directory=persist_directory
)
vectordb.persist()