-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path4_Preprocess.py
executable file
·78 lines (67 loc) · 3.18 KB
/
4_Preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#!/usr/bin/env python3
import glob
import nibabel as nib
import pandas as pd
import numpy as np
import os
import h5py
from sklearn import linear_model
from scipy import stats
from settings import *
subs = glob.glob('%ssub*.html'%(fmripreppath_old))
subs = [s.replace('.html', '') for s in subs]
subs = [s.replace(fmripreppath_old, '') for s in subs]
subs = [sub for sub in subs if not os.path.isfile(prepath + sub + '.h5') and sub not in bad_sub_dict]
# Check if fmap has been processed
# subs = [sub for sub in subs if len(glob.glob(fmripreppath_old+sub+'/figures/*sdc*'))==2]
Phenodf = pd.concat((pd.read_csv(f) for f in glob.glob(phenopath+'HBN_R*Pheno.csv')),ignore_index=True)
for sub in subs:
print('Processing subject ', sub)
Demo = {'Age': Phenodf['Age'][Phenodf['EID'] == sub[4:]].iloc[0],
'Sex': Phenodf['Sex'][Phenodf['EID'] == sub[4:]].iloc[0]}
with h5py.File(os.path.join(prepath + sub + '.h5')) as hf:
grp = hf.create_group('Pheno')
for k,v in Demo.items():
grp.create_dataset(k,data=v)
for task in ['DM','TP']:
D = dict()
print('movie ', task)
for hem in ['L', 'R']:
fname = os.path.join(fmripreppath_old + sub + '/func/' + \
sub + '_task-movie' + task + '_bold_space-fsaverage6.' + hem + '.func.gii')
print(' Loading ', fname)
gi = nib.load(fname)
D[hem] = np.column_stack([gi.darrays[t].data for t in range(len(gi.darrays))])
# Use regressors for:
# -CSF
# -WhiteMatter
# -FramewiseDisplacement
# -All cosine bases for drift (0.008 Hz = 125s)
# -X, Y, Z and derivatives
# -RotX, RotY, RotZ and derivatives
conf = np.genfromtxt(os.path.join(fmripreppath_old + sub + '/func/' + \
sub + '_task-movie' + task + '_bold_confounds.tsv'), names=True)
motion = np.column_stack((conf['X'],
conf['Y'],
conf['Z'],
conf['RotX'],
conf['RotY'],
conf['RotZ']))
reg = np.column_stack((conf['CSF'],
conf['WhiteMatter'],
np.nan_to_num(conf['FramewiseDisplacement']),
np.column_stack([conf[k] for k in conf.dtype.names if 'Cosine' in k]),
motion,
np.vstack((np.zeros((1,motion.shape[1])), np.diff(motion, axis=0)))))
print(' Cleaning and zscoring')
for hem in ['L', 'R']:
regr = linear_model.LinearRegression()
regr.fit(reg, D[hem].T)
D[hem] = D[hem] - np.dot(regr.coef_, reg.T) - regr.intercept_[:, np.newaxis]
# Note 8% of values on cortical surface are NaNs, and the following will therefore throw an error
D[hem] = stats.zscore(D[hem], axis=1)
with h5py.File(os.path.join(prepath + sub + '.h5')) as hf:
grp = hf.create_group(task)
grp.create_dataset('L', data=D['L'])
grp.create_dataset('R', data=D['R'])
grp.create_dataset('reg',data=reg)