-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathHMM_settings.py
123 lines (104 loc) · 3.65 KB
/
HMM_settings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
#!/usr/bin/env python3
# HMM Settings
import os
from ISC_settings import *
from motion_check import outliers
from sklearn.model_selection import KFold
pd.options.mode.chained_assignment = None
subord2 = [s for s in subord if s not in outliers]
agel,pcl,phenol = make_phenol(subord2)
agespan,nbinseq,eqbins,ageeq,lenageeq,minageeq = bin_split(subord2)
roidir = ISCpath+'Yeo_parcellation_outlier_'
seeds = np.char.mod('%d', np.arange(4))
nkdir = HMMpath+'nk_moreshuff_outlier_'
llh5 = HMMpath+'ll_diff_seeds_outlier.h5'
llcsv = HMMpath+'ll_diff_seeds_outlier.csv'
pvals_file = ISCpath+'p_vals_seeds_outlier.h5'
HMMsavedir = HMMpath+'shuff_5bins_train04_outlier_'
tasks = ['DM','TP']
TR=0.8
nTR=[750,250]
TR1 = 12 #12 sec
TR2 = 300 #300 sec (5 min)
k_list = np.unique(np.round((10*60)/np.arange(TR1,TR2,TR1))).astype(int)
nsplit = 5
bins = [0,nbinseq-1]
nshuff = 100
ll_thresh = 0.002
def FDR_p(pvals):
# Written by Chris Baldassano (git: cbaldassano), given permission to adapt into my code on 04/18/2019 #
# Port of AFNI mri_fdrize.c
# Ensure p values are valid, and not exactly equal to 0 or 1
assert np.all(pvals >= 0) and np.all(pvals <= 1)
pvals[pvals < np.finfo(np.float_).eps] = np.finfo(np.float_).eps
pvals[pvals == 1] = 1-np.finfo(np.float_).eps
n = pvals.shape[0]
# Compute q using step-down procedure
qvals = np.zeros((n))
sorted_ind = np.argsort(pvals)
sorted_pvals = pvals[sorted_ind]
qmin = 1.0
for i in range(n-1, -1, -1):
qval = (n * sorted_pvals[i])/(i+1)
if qval > qmin:
qval = qmin
else:
qmin = qval
qvals[sorted_ind[i]] = qval
# Estimate number of true positives m1 and adjust q
if n >= 233:
phist = np.histogram(pvals, bins=20, range=(0, 1))[0]
sorted_phist = np.sort(phist[3:19])
if np.sum(sorted_phist) >= 160:
median4 = n - 20*np.dot(np.array([1, 2, 2, 1]),
sorted_phist[6:10])/6
median6 = n - 20*np.dot(np.array([1, 2, 2, 2, 2, 1]),
sorted_phist[5:11])/10
m1 = min(median4, median6)
qfac = (n - m1)/n
if qfac < 0.5:
qfac = 0.25 + qfac**2
qvals *= qfac
return qvals
def nearest_peak(v):
"""Estimates location of local maximum nearest the origin
Starting at the origin, we follow the local gradient until reaching a
local maximum. A quadratic function is then fit to the maximum and its
two surrounding points, and the peak of this function is used as a
continuous-valued estimate of the location of the maximum.
Parameters
----------
v : ndarray
Array of values from [-max_lag, max_lag] inclusive
Returns
-------
float
Location of peak of quadratic fit
"""
lag = (len(v)-1)//2
# Find local maximum
while 2 <= lag <= (len(v) - 3):
win = v[(lag-1):(lag+2)]
if (win[1] > win[0]) and (win[1] > win[2]):
break
if win[0] > win[2]:
lag -= 1
else:
lag += 1
# Quadratic fit
x = [lag-1, lag, lag+1]
y = v[(lag-1):(lag+2)]
denom = (x[0] - x[1]) * (x[0] - x[2]) * (x[1] - x[2])
A = (x[2] * (y[1] - y[0]) + x[1] * \
(y[0] - y[2]) + x[0] * (y[2] - y[1])) / denom
B = (x[2]*x[2] * (y[0] - y[1]) + x[1]*x[1] * (y[2] - y[0]) + \
x[0]*x[0] * (y[1] - y[2])) / denom
max_x = (-B / (2*A))
return min(max(max_x, 0), len(v)-1)
if os.path.exists(llcsv):
df = pd.read_csv(llcsv, index_col=0)
df=df[((df['0_2k_diff']>ll_thresh) | (df['4_2k_diff']>ll_thresh))]
ROIl = list(df.index)
nsub= 40
y = [0]*int(np.floor(nsub/nsplit))*4+[1]*(int(np.floor(nsub/nsplit)))
kf = KFold(n_splits=nsplit, shuffle=True, random_state=2)