forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsign.py
317 lines (282 loc) · 9.08 KB
/
sign.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import argparse
import time
import dgl
import dgl.function as fn
import numpy as np
import torch
import torch.nn as nn
from dataset import load_dataset
class FeedForwardNet(nn.Module):
def __init__(self, in_feats, hidden, out_feats, n_layers, dropout):
super(FeedForwardNet, self).__init__()
self.layers = nn.ModuleList()
self.n_layers = n_layers
if n_layers == 1:
self.layers.append(nn.Linear(in_feats, out_feats))
else:
self.layers.append(nn.Linear(in_feats, hidden))
for i in range(n_layers - 2):
self.layers.append(nn.Linear(hidden, hidden))
self.layers.append(nn.Linear(hidden, out_feats))
if self.n_layers > 1:
self.prelu = nn.PReLU()
self.dropout = nn.Dropout(dropout)
self.reset_parameters()
def reset_parameters(self):
gain = nn.init.calculate_gain("relu")
for layer in self.layers:
nn.init.xavier_uniform_(layer.weight, gain=gain)
nn.init.zeros_(layer.bias)
def forward(self, x):
for layer_id, layer in enumerate(self.layers):
x = layer(x)
if layer_id < self.n_layers - 1:
x = self.dropout(self.prelu(x))
return x
class SIGN(nn.Module):
def __init__(
self,
in_feats,
hidden,
out_feats,
num_hops,
n_layers,
dropout,
input_drop,
):
super(SIGN, self).__init__()
self.dropout = nn.Dropout(dropout)
self.prelu = nn.PReLU()
self.inception_ffs = nn.ModuleList()
self.input_drop = nn.Dropout(input_drop)
for hop in range(num_hops):
self.inception_ffs.append(
FeedForwardNet(in_feats, hidden, hidden, n_layers, dropout)
)
self.project = FeedForwardNet(
num_hops * hidden, hidden, out_feats, n_layers, dropout
)
def forward(self, feats):
feats = [self.input_drop(feat) for feat in feats]
hidden = []
for feat, ff in zip(feats, self.inception_ffs):
hidden.append(ff(feat))
out = self.project(self.dropout(self.prelu(torch.cat(hidden, dim=-1))))
return out
def reset_parameters(self):
for ff in self.inception_ffs:
ff.reset_parameters()
self.project.reset_parameters()
def get_n_params(model):
pp = 0
for p in list(model.parameters()):
nn = 1
for s in list(p.size()):
nn = nn * s
pp += nn
return pp
def neighbor_average_features(g, args):
"""
Compute multi-hop neighbor-averaged node features
"""
print("Compute neighbor-averaged feats")
g.ndata["feat_0"] = g.ndata["feat"]
for hop in range(1, args.R + 1):
g.update_all(
fn.copy_u(f"feat_{hop-1}", "msg"), fn.mean("msg", f"feat_{hop}")
)
res = []
for hop in range(args.R + 1):
res.append(g.ndata.pop(f"feat_{hop}"))
if args.dataset == "ogbn-mag":
# For MAG dataset, only return features for target node types (i.e.
# paper nodes)
target_mask = g.ndata["target_mask"]
target_ids = g.ndata[dgl.NID][target_mask]
num_target = target_mask.sum().item()
new_res = []
for x in res:
feat = torch.zeros(
(num_target,) + x.shape[1:], dtype=x.dtype, device=x.device
)
feat[target_ids] = x[target_mask]
new_res.append(feat)
res = new_res
return res
def prepare_data(device, args):
"""
Load dataset and compute neighbor-averaged node features used by SIGN model
"""
data = load_dataset(args.dataset, device)
g, labels, n_classes, train_nid, val_nid, test_nid, evaluator = data
in_feats = g.ndata["feat"].shape[1]
feats = neighbor_average_features(g, args)
labels = labels.to(device)
# move to device
train_nid = train_nid.to(device)
val_nid = val_nid.to(device)
test_nid = test_nid.to(device)
return (
feats,
labels,
in_feats,
n_classes,
train_nid,
val_nid,
test_nid,
evaluator,
)
def train(model, feats, labels, loss_fcn, optimizer, train_loader):
model.train()
device = labels.device
for batch in train_loader:
batch_feats = [x[batch].to(device) for x in feats]
loss = loss_fcn(model(batch_feats), labels[batch])
optimizer.zero_grad()
loss.backward()
optimizer.step()
def test(
model, feats, labels, test_loader, evaluator, train_nid, val_nid, test_nid
):
model.eval()
device = labels.device
preds = []
for batch in test_loader:
batch_feats = [feat[batch].to(device) for feat in feats]
preds.append(torch.argmax(model(batch_feats), dim=-1))
# Concat mini-batch prediction results along node dimension
preds = torch.cat(preds, dim=0)
train_res = evaluator(preds[train_nid], labels[train_nid])
val_res = evaluator(preds[val_nid], labels[val_nid])
test_res = evaluator(preds[test_nid], labels[test_nid])
return train_res, val_res, test_res
def run(args, data, device):
(
feats,
labels,
in_size,
num_classes,
train_nid,
val_nid,
test_nid,
evaluator,
) = data
train_loader = torch.utils.data.DataLoader(
train_nid, batch_size=args.batch_size, shuffle=True, drop_last=False
)
test_loader = torch.utils.data.DataLoader(
torch.arange(labels.shape[0]),
batch_size=args.eval_batch_size,
shuffle=False,
drop_last=False,
)
# Initialize model and optimizer for each run
num_hops = args.R + 1
model = SIGN(
in_size,
args.num_hidden,
num_classes,
num_hops,
args.ff_layer,
args.dropout,
args.input_dropout,
)
model = model.to(device)
print("# Params:", get_n_params(model))
loss_fcn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(
model.parameters(), lr=args.lr, weight_decay=args.weight_decay
)
# Start training
best_epoch = 0
best_val = 0
best_test = 0
for epoch in range(1, args.num_epochs + 1):
start = time.time()
train(model, feats, labels, loss_fcn, optimizer, train_loader)
if epoch % args.eval_every == 0:
with torch.no_grad():
acc = test(
model,
feats,
labels,
test_loader,
evaluator,
train_nid,
val_nid,
test_nid,
)
end = time.time()
log = "Epoch {}, Time(s): {:.4f}, ".format(epoch, end - start)
log += "Acc: Train {:.4f}, Val {:.4f}, Test {:.4f}".format(*acc)
print(log)
if acc[1] > best_val:
best_epoch = epoch
best_val = acc[1]
best_test = acc[2]
print(
"Best Epoch {}, Val {:.4f}, Test {:.4f}".format(
best_epoch, best_val, best_test
)
)
return best_val, best_test
def main(args):
if args.gpu < 0:
device = "cpu"
else:
device = "cuda:{}".format(args.gpu)
with torch.no_grad():
data = prepare_data(device, args)
val_accs = []
test_accs = []
for i in range(args.num_runs):
print(f"Run {i} start training")
best_val, best_test = run(args, data, device)
val_accs.append(best_val)
test_accs.append(best_test)
print(
f"Average val accuracy: {np.mean(val_accs):.4f}, "
f"std: {np.std(val_accs):.4f}"
)
print(
f"Average test accuracy: {np.mean(test_accs):.4f}, "
f"std: {np.std(test_accs):.4f}"
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="SIGN")
parser.add_argument("--num-epochs", type=int, default=1000)
parser.add_argument("--num-hidden", type=int, default=512)
parser.add_argument("--R", type=int, default=5, help="number of hops")
parser.add_argument("--lr", type=float, default=0.001)
parser.add_argument("--dataset", type=str, default="ogbn-mag")
parser.add_argument(
"--dropout", type=float, default=0.5, help="dropout on activation"
)
parser.add_argument("--gpu", type=int, default=0)
parser.add_argument("--weight-decay", type=float, default=0)
parser.add_argument("--eval-every", type=int, default=10)
parser.add_argument("--batch-size", type=int, default=50000)
parser.add_argument(
"--eval-batch-size",
type=int,
default=100000,
help="evaluation batch size",
)
parser.add_argument(
"--ff-layer", type=int, default=2, help="number of feed-forward layers"
)
parser.add_argument(
"--input-dropout",
type=float,
default=0,
help="dropout on input features",
)
parser.add_argument(
"--num-runs",
type=int,
default=10,
help="number of times to repeat the experiment",
)
args = parser.parse_args()
print(args)
main(args)